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T 
1976s. The recent proliferation of parallel 

his decade has witnessed the in- 
troduction of a wide variety of 
new computer architectures for 

parallel processing that complement and 
extend the major approaches to parallel 
computing developed in the 1960s and 

The diversity of 

architectures can 
parallel computer 

* Include pipelined vector processors 
and other architectures that intuitively 
seem to merit inclusion as parallel 
architectures, but which are difficult to 
gracefully accommodate within 
Flvnn’s scheme. i 

processing technologies has included new 
parallel hardware architectures (systolic bewilder the non- We will examine each of these impera- 

tives as we seek a definition that satisfies 
and hypercube), interconnection technolo- specialist. This tutorial all of them and provides the basis for a 
gies (multistage switching topologies), reasonable taxonomy. 
and programming paradigms (applicative reviews alternative 
programming). The sheer diversity of the 
field poses a substantial obstacle to the 
nonspecialist who wishes to comprehend 
what kinds of parallel architectures exist 
and how their relationship to one another 
defines an orderly schema. 

This discussion attempts to place recent 
architectural innovations in the broader 
context of parallel architecture develop- 
ment by surveying the fundamentals of 
both newer and more established parallel 
computer architectures and by placing 
these architectural alternatives in a coher- 
ent framework. The survey’s primary 
emphasis concerns architectural con- 
structs rather than specific parallel ma- 
chines. 

Terminology and 
taxonomy 

Problems. Diverse definitions have 
been proposed for parallel architectures. 

approaches to parallel 
processing within the 
framework of a high- 

level taxonomy. 

The difficulty in precisely defining the 
term is intertwined with the problem of 
specifying a parallel architecture taxon- 
omy. A central problem for specifying a 
definition and consequent taxonomy for 
modern parallel architectures is to satisfy 
the following set of imperatives: 

l Exclude architectures incorporating 
only low-level parallel mechanisms 
that have become commonplace fea- 
tures of modern computers. 

l Maintain elements of Flynn’s useful 
taxonomy’ based on instruction and 
data streams. 

Low-level parallelism. There are two 
reasons to exclude machines that employ 
only low-level parallel mechanisms from 
the set of parallel architectures. First, fail- 
ure to adopt a more rigorous standard might 
make the majority of modern computers 
“parallel architectures,” negating the 
term’s usefulness. Second, architectures 
having only the features listed below do 
not offer an explicit, coherent framework 
for developing high-level parallel solu- 
tions: 

l Instruction pipelining - the decom- 
position of instruction execution into a 
linear series of autonomous stages, 
allowing each stage to simultaneously 
perform a portion of the execution 
process (such as decode, calculate ef- 
fective address, fetch operand, exe- 
cute, and store). 

l Multiple CPU functional units - 
providing independent functional 
units for arithmetic and Boolean 
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Figure 1. High-level taxonomy of parallel computer architectures. 

operations that execute concurrently. 
9 Separate CPU and II0 processors - 

freeing the CPU from I/O control re- 
sponsibilities by using dedicated I/O 
processors; solutions range from rela- 
tively simple I/O controllers to com- 
plex peripheral processing units. 

Although these features contribute signifi- 
cantly to performance engineering, their 
presence does not make a computer a par- 
allel architecture. 

Flynn’s taxonomy. Flynn’s taxonomy 
classifies architectures on the presence of 
single or multiple streams of instructions 
and data. This yields the four categories 
below: 

SISD (single instruction, single data 
stream) - defines serial computers. 

MISD (multiple instruction, single data 
stream) - would involve multiple 
processors applying different instruc- 
tions to a single datum; this hypotheti- 
cal possibility is generally deemed 
impractical. 

SIMD (single instruction, multiple data 
streams) - involves multiple proces- 
sors simultaneously executing the 
same instruction on different data (this 
definition is discussed further prior to 
examining array processors below). 

6 

MIMD (multiple instruction, multiple 
data streams) - involves multiple 
processors autonomously executing 
diverse instructions on diverse data. 

Although these distinctions provide a 
useful shorthand for characterizing archi- 
tectures, they are insufficient for classify- 
ing various modern computers. For ex- 
ample, pipelined vector processors merit 
inclusion as parallel architectures, since 
they exhibit substantial concurrent arith- 
metic execution and can manipulate hun- 
dreds of vector elements in parallel. How- 
ever, they are difficult to accommodate 
within Flynn’s taxonomy, because they 
lack processors executing the same in- 
struction in SIMD lockstep and lack the 
asynchronous autonomy of the MIMD 
category. 

Definition and taxonomy. A first step 
to providing a satisfactory taxonomy is to 
articulate a definition of parallel architec- 
ture. The definition should include appro- 
priate computers that the Flynn schema 
cannot handle and exclude architectures 
incorporating only low-level parallelism. 
Therefore, aparallel architecture provides 
an explicit, high-level framework for the 
development of parallel programming so- 
lutions by providing multiple processors, 
whether simple or complex, that cooperate 

to solve problems through concurrent 
execution. 

Figure 1 shows a taxonomy based on the 
imperatives discussed earlier and the pro- 
posed definition. This informal taxonomy 
uses high-level categories to delineate the 
principal approaches to parallel computer 
architectures and to show that these ap- 
proaches define a coherent spectrum of 
architectural alternatives. Definitions for 
each category are provided below. 

This taxonomy is not intended to sup- 
plant efforts to construct more fully articu- 
lated taxonomies. Such taxonomies pro- 
vide comprehensive subcategories to re- 
flect permutations of architectural charac- 
teristics and to cover lower level features. 
The “Further reading” section at the end 
references several thoughtful taxonomic 
studies that address these goals. 

Synchronous 
architectures 

Synchronous parallel architectures co- 
ordinate conculrent operations in lockstep 
through global clocks, central control 
units, or vector unit controllers. 

Pipelined vector processors. The first 
vector processor architectures were devel- 
oped in the late 1960s and early 1970s2,’ to 
directly support massive vector and matrix 
calculations. Vector processor? are char- 
acterized by multiple, pipelined functional 
units, which implement ‘arithmetic and 
Boolean operations for both vectors and 
scalars and which can operate concur- 
rently. Such architectures provide parallel 
vector processing by sequentially stream- 
ing vector elements through a functional 
unit pipeline and by streaming the output 
results of one unit into the pipeline of 
another as input (a process known as 
“chaining”). 

A representative architecture might 
have a vector addition unit consisting of 
six pipeline stages (see Figure 2). If each 
pipeline stage in the hypothetical architec- 
ture shown in the figure has a cycle time of 
20 nanoseconds, then 120 ns elapse from 
the time operands al and bl enter stage 1 
until result cl is available. When the pipe- 
line is filled, however, a result is available 
every 20 ns. Thus, start-up overhead of 
pipelined vector units has significant per- 
formance implications. In the case of the 
register-to-register architecture depicted, 
special high-speed vector registers hold 
operands and results. Efficient perforrn- 
ante for such architectures (for example, 
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the Cray- 1 and Fujitsu VP-200) is obtained 
when vector operand lengths are multiples 
of the vector register size. Memory-to- 
memory architectures (such as the Control 
Data Cyber 205 and Texas Instruments 
Advanced Scientific Computer) use spe- 
cial memory buffers instead of vector 
registers. 

Recent vector processing supercomput- 
ers (such as the Cray X-MP/4 and ETA- 10) 
unite four to 10 vector processors through 
a large shared memory. Since such archi- 
tectures can support task-level parallel- 
ism, they could arguably be termed MIMD 
architectures, although vector processing 
capabilities are the fundamental aspect of 
their design. 

SIMD architectures. SIMD architec- 
tures (see Figure 3) typically employ a 
central control unit, multiple processors, 
and an interconnection network (IN) for 
either processor-to-processor or proces- 
sor-to-memory communications. The con- 
trol unit broadcasts a single instruction to 
all processors, which execute the instruc- 
tion in lockstep fashion on local data. The 
interconnection network allows instrtic- 
tion results calculated at one processor to 
be communicated to another processor for 
use as operands in a subsequent instruc- 
tion. Individual processors may beallowed 
to disable the current instruction. 

Processor array architectures. Proces- 
sor arrays’ structured for numerical SIMD 
execution have often been employed for 
large-scale scientific calculations, such as 
image processing and nuclear energy 
modeling. Processor arrays developed in 
the late 1960s (such as the Illiac-IV) and 
more recent successors (such as the Bur- 
roughs Scientific Processor) utilize proc- 
essors that accommodate word-sized oper- 
ands. Operands are usually floating-point 
(or complex) values and typically range in 
size from 32 to 64 bits. Various IN schemes 
have been used to provide processor-to- 
processor or processor-to-memory com- 
munications, with mesh and crossbar ap- 
proaches being among the most popular. 

One variant of processor array architec- 
tures involves using a large number of one- 
bit processors. In bit-plane architectures, 
the array of processors is arranged in a 
symmetrical grid (such as 64x64) and as- 
sociated with multiple “planes” of mem- 
ory bits that correspond to the dimensions 
of the processor grid (see Figure 4). 
Processor n (P,), situated in the processor 
grid at location (x, y), operates on the 
memory bits at location (x, y) in all the 
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Figure 5. Associative memory processing organization. 

associated memory planes. Usually, op- 
erations are provided to copy, mask, and 
perform arithmetic operations on entire 
memory planes, as well as on columns and 
rows within a plane. 

Loral’s Massively Parallel Processor’ 
and ICL’s Distributed Array Processor 
exemplify this kind of architecture, which 
is often used for image processing applica- 
tions by mapping pixels to the memory’s 
planar structure. Thinking Machines’ 
Connection Machine organizes as many as 
65,536 one-bit processors as sets of four- 
processor meshes united in a hypercube 
topology. 

Associative memoryprocessor architec- 
tures. Computers built around an associa- 
tive memory’ constitute a distinctive type 
of SIMD architecture that uses special 
comparison logic to access stored data in 

parallel according to its contents. Research 
in constructing associative memories be- 
gan in the late 1950s with the obvious goal 
of being able to search memory in parallel 
for data that matched some specified da- 
tum. “Modem” associative memory proc- 
essors developed in the early 1970s (for 
example, Bell Laboratories’ Parallel Ele- 
ment Processing Ensemble, or PEPE) and 
recent architectures (for example, Loral’s 
Associative Processor, or Aspro) have 
naturally been geared to database-oriented 
applications, such as tracking and surveil- 
lance. 

Figure 5 shows the characteristic func- 
tional units of an associative memory pro- 
cessor. A program controller (serial com- 
puter) reads and executes instructions, 
invoking a specialized array controller 
when associative memory instructions are 
encountered. Special registers enable the 

program controller and associative mem- 
ory to share data. 

Most current associative memory pro- 
cessors use a bit-serial organization, which 
involves concurrent operations on a single 
bit-slice (bit-column) of all the words in 
the associative memory. Each associative 
memory word, which usually has a very 
large number of bits (for example, 32,768), 
is associated with special registers and 
comparison logic that functionally consti- 
tute a processor. Hence, an associative 
processor with4,096 words effectively has 
4,096 processing elements. 

Figure 6 depicts a row-oriented com- 
parison operation for a generic bit-serial 
architecture. A portion of the comparison 
register contains the value to be matched. 
All of the associative processing elements 
start at a specified memory column and 
compare the contents of four consecutive 
bits in their row against the comparison 
register contents, setting a bit in the A 
register to indicate whether or not their row 
contains a match. 

In Figure 7 a logical OR operation is 
performed on a bit-column and the bit- 
vector in register A, with register B receiv- 
ing the results. A zero in the mask register 
indicates that the associated word is not to 
be included in the current operation. 

Systolic architectures. In the early 
1980s H.T. Kung of Carnegie Mellon 
University proposed systolic architectures 
to solve the problems of special-purpose 
systems that must often balance intensive 
computations with demanding I/O 
bandwidths.R Systolic architectures (sys- 
tolic arrays) are pipelined multiprocessors 
in which data is pulsed in rhythmic fashion 
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Figure 8. Systolic flow of data from 
and to memory. 

from memory and through a network of 
processors before returning to memory 
(see Figure 8). A global clock and explicit 
timing delays synchronize this pipelined 
data flow, which consists of operands ob- 
tained from memory and partial results to 
be used by each processor. Modular pro- 
cessors united by regular, local intercon- 
nections provide basic building blocks for 
a variety of special-purpose systems. Dur- 
ing each time interval, these pfocessors 
execute a short, invariant sequence of in- 
structions. 
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Systolic arrays address the performance 
requirements of special-purpose systems 
by achieving significant parallel computa- 
tion and by avoiding I/O and memory 
bandwidth bottlenecks. A high degree of 
parallelism is obtained by pipelining data 
through multiple processors, typically in 
two-dimensional fashion. Systolic archi- 
tectures maximize the computations per- 
formed on a datum once it has been ob- 
tained from memory or an external device. 
Hence, once a datum enters the systolic 
array, it is passed to any processor that 
needs it, without an intervening store to 
memory. Only processors at the topologi- 
cal boundaries of the array perform I/O to 
and from memory. 

m-c-l cation* 

Figure 9. Systolic matrix multipli- 

(e) 

Figure 9a-e shows how a simple systolic 
array could calculate the outer product of 
two matrices, 

A=labl and B=lefl 
lcdl lghl 

The zero inputs shown moving through the 
array are used for synchronization. Each 
processor begins with an accumulator set 
to zero and, during each cycle, adds the 
product of its two inputs to the accumula- 
tor. After five cycles the matrix product is 
complete. 

rithm-specific architectures, particularly processors that can execute independent 
for signal processing. In addition, pro- instruction streams, using local data. Thus, 
grammable (reconfigurable) systolic MIMD computers support parallel solu- 
architectures (such as Carnegie Mellon’s tions that require processors to operate in a 
Warp and Saxpy’s Matrix-l) have been largely autonomous manner. Although 
constructed that are not limited to imple- software processes executing on MIMD 
menting a single algorithm. Although sys- architectures are synchronized by passing 
tolic concepts were originally proposed for messages through an interconnection net- 
VLSI-based systems to be implemented at work or by accessing data in shared mem- 
the chip level, systolic architectures have ory units, MIMD architectures are asyn- 
been implemented at a variety of physical chronous computers, characterized by 
levels. decentralized hardware control. 

MIMD architectures 
A growing number of special-purpose 

systems use systolic organization for algo- MIMD architectures employ multiple 

The impetus for developing MIMD 
architectures can be ascribed to several 
interrelated factors. MIMD computers 
support higher level parallelism (subpro- 
gram and task levels) that can be exploited 
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by “divide and conquer” algorithms organ- 
ized as largely independent subcalcula- 
tions (for example, searching and sorting). 
MIMD architectures may provide an alter- 
native to depending on further implemen- 
tation refinements in pipelined vector 
computers to provide the significant per- 
formance increases needed to make some 
scientific applications tractable (such as 
three-dimensional fluid modeling). Fi- 
nally, the cost-effectiveness of n-proces- 
sor systems over n single-processor sys- 
tems encourages MIMD experimentation. 

Distributed memory architectures. 
Distributed memory architectures (Figure 
10) connect processing nodes (consisting 

Figure 10. MIMD distributed memory of an autonomous processor and its local 
architecture structure. memory) with a processor-to-processor 
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(4 
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Figure 11. MIMD interconnection network topologies: (a) ring; (b) mesh; 
(c) tree; (d) hypercube; (e) tree mapped to a reconfigurable mesh. 

interconnection network. Nodes share data 
by explicitly passing messages through the 
interconnection network, since there is no 
shared memory. A product of 1980s re- 
search, these architectures have princi- 
pally been constructed in an effort to pro- 
vide a multiprocessor architecture that will 
“scale” (accommodate a significant in- 
crease in processors) and will satisfy the 
performance requirements of large scien- 
tific applications characterized by local 
data references. 

Various interconnection network to- 
pologies have been proposed to support 
architectural expandability and provide 
efficient performance for parallel pro- 
grams with differing interprocessor com- 
munication patterns. Figure 1 la-e depicts 
the topologies discussed below. 

Ring topology architectures. The com- 
munication diameter (N/2) of ring topol- 
ogy architectures can be reduced by adding 
chordal connections. Using chordal con- 
nections or multiple rings can increase a 
ring-based architecture’s fault tolerance. 
Typically, fixed-size message packets are 
used that include a node destination field. 
Ring topologies are most appropriate for 
a small number of processors executing 
algorithms not dominated by data com- 
munications. 

Mesh topology architectures. A two- 
dimensional mesh, or lattice, topology has 
n2 nodes, each connected to its four imme- 
diate neighbors. Wraparound connections 
at the edges are sometimes provided to 
reduce the communication diameter from 
2(n-1) to 2 * (Integer-part of n/2). Com- 
munications may be augmented by provid- 
ing additional diagonal links or by using 
buses to connect nodes by rows and col- 
umns. The topological correspondence 
between meshes and matrix-oriented algo- 
rithms encourages mesh-based architec- 
ture research. 

Tree topology architectures. Tree topol- 
ogy architectures, such as Columbia Uni- 
versity’s DAD02 and Non-Von, have been 
constructed to support divide-and-conquer 
algorithms for searching and sorting, im- 
age processing algorithms, and dataflow 
and reduction programming paradigms. 
Although a variety of tree-structured to- 
pologies have been suggested, complete 
binary trees are the most analyzed variant. 

Several strategies have been employed 
to reduce the communication diameter of 
tree topologies (2(n-1) for a complete 
binary tree with n levels and 2”-1 pro- 
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cessors). Example solutions include add- 
ing additional interconnection network 
pathways to unite all nodes at the same 
tree level. 

Hypercuhe topology architectures. A 
Boolean n-cube or “hypercube” topology 
uses N = 2” processors arranged in an n- 
dimensional cube, where each node has 
n=logzN bidirectional links to adjacent 
nodes. Individual nodes are uniquely iden- 
tified by n-bit numeric values ranging from 
0 to N-l and assigned in a manner that 
ensures adjacent nodes’ values differ by a 
single bit. The communication diameter of 
such a hypercube topology architecture is 
n=log>N. 

Hypercube architecture research has 
been strongly influenced by the desire to 
develop a “scalable” architecture that sup- 
ports the performance requirements of 3D 
scientific applications. Extant hypercube 
architectures include the Cosmic Cube, 
Ametek Series 2010, Intel Personal Super- 
computer, and Ncube/lO. 

Reconfigurahle topology architectures. 
Although distributed memory architec- 
tures possess an underlying physical topol- 
ogy, reconfigurable topology architectures 
provide programmable switches that allow 
users to select a logical topology matching 
application communication patterns. The 
functional reconfigurability available in 
research prototypes ranges from specify- 
ing different topologies (such as Lawrence 
Snyder’s Configurable Highly Parallel 
Computer, or Chip) to partitioning a base 
topology into multiple interconnection 
topologies of the same type (such as 
Howard J. Siegel’s Partitionable SIMD/ 
MIMD System, or Pasm). A significant 
motivation for constructing reconfigurable 
topology architectures is that a single 
architecture can act as many special-pur- 
pose architectures that efficiently support 
the communications patterns of particular 
algorithms or algorithm steps. 

Shared-memory architectures. 
Shared memory architectures accomplish 
interprocessor coordination by providing a 
global, shared memory that each processor 
can address. Commercial shared-memory 
architectures, such as Flexible Corpora- 
tion’s Flex/32 and Encore Computer’s 
Multimax, were introduced during the 
1980s. These architectures involve mul- 
tiple general-purpose processors sharing 
memory, rather than a CPU and peripheral 
I/O processors. Shared memory computers 
do not have some of the problems encoun- 
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tered by message-passing architectures, 
such as message sending latency as data is 
queued and forwarded by intermediate 
nodes. However, other problems, such as 
data access synchronization and cache 
coherency, must be solved. 

Typically, each processor in a shared 

Coordinating processors with shared 
variables requires atomic synchronizing 
mechanisms to prevent one process from 
accessing a datum before another finishes 
updating it. These mechanisms provide an 
atomic operation that subjects a “key” to a 
comparison test before allowing either the 
key or associated data to be updated. The 
“test-and-set” mechanism, for example, is 
an atomic operation for testing the key’s 
value and, if the test result is true, updating 
the key value. 

memory architecture also has a local 
memory used as a cache. Multiple copies 
of the same shared memory data, therefore, 
may exist in various processors’ caches at 
a given time. Maintaining a consistent 
version of such data is the cache coherency 
problem, which concerns providing new 
versions of the cached data to each in- 
volved processor whenever a processor 
updates its copy. Although systems with a 
small number of processors can use hard- 
ware“snooping”mechanisms todetermine 
when shared memory data has been up- 
dated, larger systems usually rely on soft- 
ware solutions to minimize performance 
impact. 

sors to shared memory (outlined below). 

Figure 12a-c illustrates some major al- 
ternatives for connecting multiple proces- 
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Figure 12. MIMD shared-memory interconnection schemes: (a) bus interconnec- 
tion; (b) 2x2 crossbar; (c) 8x8 omega MIN routing a P, request to M,. 
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Figure 13. MIMD/SIMD operation. 

Bus interconnections. Time-shared 
buses (Figure 12a) offer a fairly simple 
way to give multiple processors access to a 
shared memory. A single, time-shared bus 
effectively accommodates a moderate 
number of processors (from four to 20), 
since only one processor accesses the bus 
at a given time. Some bus-based architec- 
tures, such as the experimental Cm* archi- 
tecture, employ two kinds of buses - a 
local bus linking a cluster of processors 
and a higher level system bus linking dedi- 
cated service processors associated with 
each cluster. 

Crossbar interconnections. Crossbar 
interconnection technology uses a cross- 
bar switch of & crosspoints to connect n 
processors to n memories (see Figure 12b). 
Processors may contend for access to a 
memory location, but crossbars prevent 
contention for communication links by 
providing a dedicated pathway between 
each possible processor/memory pairing. 

Power, pinout, and size considerations 
have limited crossbar architectures to a 
small number of processors (from four to 
16). The Alliant FX/8 is a commercial 
architecture that uses a crossbar scheme to 
connect processors and cache memories. 

Multistage interconnection networks. 
Multistage interconnection networks 
(MINs)~ strike a compromise between the 
price/performance alternatives offered by 
crossbars and buses. An NxN MIN 

12 

connects N processors to N memories by 
deploying multiple “stages” or banks of 
switches in the interconnection network 
pathway. 

When N is a power of 2, one approach is 
to employ log,N stages of N/2 switches, 
using 2x2 switches. A processor making a 
memory access request specifies the de- 
sired destination (and pathway) by issuing 
a bit-value that contains a control bit for 
each stage. The switch at stage i examines 
the ith bit to determine whether the input 
(request) is to be connected to the upper or 
lower output. 

Figure 12c shows an omega network 
connecting eight processors and memo- 
ries, where a control bit equal to zero in 
dicates a connection to the upper output. 
Expandability is a significant feature of 
such a MIN, since its communication 
diameter is proportional to log,N. The 
BBN (Bolt, Beranek, and Newman) But- 
terfly, for example, can be configured 
with as many as 256 processors. 

MIMD-based 
architectural 
paradigms 

MIMD/SIMD hybrids, dataflow archi- 
tectures, reduction machines, and 
wavefront arrays all pose a similar diffi- 
culty for an orderly taxonomy of parallel 
architectures. Each of these architectural 

types is predicated on MIMD principles of 
asynchronous operation and concurrent 
manipulation of multiple instruction and 
data streams. However, each of these ar- 
chitectures is also based on a distinctive 
organizing principle as fundamental to 
its overall design as MIMD characteris- 
tics. These architectures, therefore, are 
described under the category “MIMD- 
based architectural paradigms” to high- 
light their distinctive foundations as 
well as the MIMD characteristics they 
have in common. 

MIMD/SIMD architectures. A variety 
of experimental hybrid architectures con- 
structed during the 1980s allow selected 
portions of a MIMD architecture to be 
controlled in SIMD fashion (for example, 
DADO, Non-Von, Pasm, and Texas Re- 
configurable Array Computer, or 
TRAC).“’ The implementation mecha- 
nisms explored for reconfiguring architec- 
tures and controlling SIMD execution are 
quite diverse. Using a tree-structured, 
message-passing computer’” as the base 
architecture for a MIMD/SIMD architec- 
ture helps illustrate the general concept. 

The master/slaves relation of a SIMD 
architecture’s controller and processors 
can be mapped onto the node/descendents 
relation of a subtree (see Figure 13). When 
the root processor node of a subtree oper- 
ates as a SIMD controller, it transmits 
instructions to descendent nodes that exe- 
cute the instructions on local memory data. 

The flexibility of MIMD/SIMD archi- 
tectures obviously makes them attractive 
candidates for further research. Specific 
incentives for recent development efforts 
include supporting parallel image process- 
ing and expert system applications. 

Dataflow architectures. The funda- 
mental feature of dataflow architectures is 
an execution paradigm in which instruc- 
tions are enabled for execution as soon as 
all of their operands become available. 
Thus, the sequence of executed instruc- 
tions is based on data dependencies, allow- 
ing dataflow architectures to exploit con- 
currency at the task, routine, and instruc- 
tion levels. A major incentive for dataflow 
architecture research, which dates from 
J.B. Dennis’ pioneering work in the mid- 
197Os, is to explore new computational 
models and languages that can be effec- 
tively exploited to achieve large-scale 
parallelism. 

Dataflow architectures execute data- 
flow graphs, such as the program fragment 
depicted in Figure 14. We can think of 
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Node 1 Node 2 

Figure 14. Dataflow graph-program 
fragment. 

graph nodes as representing asynchronous 
tasks, although they are often single 
instructions. Graph arcs represent com- 
munications paths that carry execution 
results needed as operands in subsequent 
instructions. 

Some of the diverse mechanisms used to 
implement dataflow computers (such as 
the Manchester Data Flow Computer, MIT 
Tagged Token Data Flow architecture, and 
Toulouse LAU System)” are outlined be- 
low. Static implementations load all graph 
nodes into memory during initialization 
and allow only one instance of a node to be 
executed at a time; dynamic architectures 
allow the creation of node instances at 
runtime and multiple instances of a node to 
be executed concurrently. 

Some architectures directly store 
“tokens” containing instruction results in- 
to a template for the instruction that will 
use them as operands. Other architectures 
use token-matching schemes, in which a 
matching unit stores tokens and tries to 
match them with instructions. When a 
complete set of tokens (all required op- 
erands) is assembled for an instruction, 
an instruction template containing the 
relevant operands is created and queued 
for execution. 

Figure 15 shows how a simplified token- 
matching architecture might process the 
program fragment shown in Figure 14. At 
step 1, the execution of (3*a) results in the 
creation of a token that contains the result 
(15) and an indication that the instruction 
at node 3 requires this as an operand. Step 
2 shows the matching unit that will match 
this token and the result token of (5*h) with 
the node 3 instruction. The matching unit 
creates the instruction token (template) 

shown at step 3. At step 4, the node store 
unit obtains the relevant instruction op- 
code from memory. The node store unit 
then fills in the relevant token fields (step 
5), and assigns the instruction to a proces- 
sor. The execution of the instruction will 
create a new result token to be used as 
input to the node 4 instruction. 

Reduction architectures. Reduction, 
or demand-driven, architecturesI imple- 
ment an execution paradigm in which an 
instruction is enabled ior execution when 
its results are required as operands for 
another instruction already enabled for 
execution. Most reduction architecture 
research began in the late 1970s to explore 
new parallel execution paradigms and to 
provide architectural support for applica- 
tive (functional) programming languages. 

Reduction architectures execute pro- 
grams that consist of nested expressions. 
Expressions are recursively defined as lit- 
erals or function applications on argu- 
ments that may be literals or expressions. 

Programs may “reference” named expres- 
sions, which always return the same value 
(the referential transparency property). 
Reduction programs are function applica- 
tions constructed from primitive functions. 

Reduction program execution consists 
of recognizing reducible expressions, then 
replacing them with their calculated val- 
ues. Thus, an entire reduction program is 
ultimately reduced to its result. Since the 
general execution paradigm only enables 
an instruction for execution when its re- 
sults are needed by a previously enabled 
instruction, some additional rule is needed 
to enable the first instruction(s) and begin 
computation. 

Practical challenges for implementing 
reduction architectures include synchro- 
nizing demands for an instruction’s results 
(since preserving referential transparency 
requires calculating an expression’s re- 
sults once only) and maintaining copies of 
expression evaluation results (since an 
expression result could be referenced 
more than once but could be consumed 

Figure 15. Dataflow token-matching example. 
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Figure 16. Reduction architecture demand token production. Figure 17. Reduction architecture result token production. 

by subsequent reductions upon first being 
delivered). 

Reduction architectures employ either 
string reduction or graph reduction to 
implement demand-driven paradigms. 
String reduction involves manipulating 
literals and copies of values, which are 
represented as strings that can be dynam- 
ically expanded and contracted. Graph 
reduction involves manipulating literals 
and references (pointers) to values. Thus, 
a program is represented as a graph, and 
garbage collection reclaims dynamically 
allocated memory as the reduction 
proceeds. 

a=+bc; 
b=+de; 
c=*fg; 
d=l;e=3;f=5;g=7. 

Rather dissimilar architectures (such as 
the Newcastle Reduction Machine, North 
Carolina Cellular Tree Machine, and Utah 
Applicative Multiprocessing System) 
have been proposed to support both string- 
and graph-reduction approaches. 

Figures 16 and 17 show a simplified 
version of a graph-reduction architecture 
that maps the program below onto tree- 
structured processors and passes tokens 
that demand or return results. Figure 16 
depicts all the demand tokens produced 
by the program, as demands for the values 
of references propagate down the tree. In 
Figure 17, the last two result tokens 
produced are shown as they are passed to 
the root node. 

Wavefront array architectures. 
Wavefront array processors’j combine 
systolic data pipelining with an asynchro- 
nous dataflow execution paradigm. S-Y. 
Kung developed wavefront array concepts 
in the early 1980s to address the same kind 
of problems that stimulated systolic array 
research - producing efficient, cost-ef- 
fective architectures for special-purpose 
systems that balance intensive computa- 
tions with high I/O bandwidth (see the 
systolic array section above). 

and regular, local interconnection net- 
works. However, wavefront arrays replace 
the global clock and explicit time delays 
used for synchronizing systolic data pipe- 
lining with asynchronous handshaking as 
the mechanism for coordinating inter- 
processor data movement. Thus, when a 
processor has performed its computations 
and is ready to pass data to its successor, it 
informs the successor, sends data when the 
successor indicates it is ready, and receives 
an acknowledgment from the successor. 
The handshaking mechanism makes com- 
putational wavefronts pass smoothly 
through the array without intersecting, as 
the array’s processors act as a wave propa- 
gating medium. In this manner, correct 
sequencing of computations replaces the 
correct timing of systolic architectures. 

Wavefront and systolic architectures are 
both characterized by modular processors 

Figure 18a-c depicts wavefront array 
concepts, using the matrix multiplication 
example used earlier to illustrate systolic 
operation (Figure 9). The example archi- 
tecture consists of processing elements 
(PEs) that have a one-operand buffer for 
each input source. Whenever the buffer for 
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a memory input source is empty and the 
associated memory contains another oper- 
and, that available operand is immediately 
read. Operands from other PEs are ob- 
tained using a handshaking protocol. 

Figure 18a shows the situation after 
memory input buffers are initially filled. In 
Figure 18b PE( 1,l) adds the product ae to 
its accumulator and transmits operands a 
and e to neighbors; thus, the first computa- 
tional wavefront is shown propagating 
from PE(l,l) to PE(1,2) and PE(2,l). Fig- 
ure 18~ shows the first computational 
wavefront continuing to propagate, while a 
second wavefront is propagated by 
PE(l,l). 

*a 0 0 

Kung argued I3 that wavefront arrays 
enjoy several advantages over systolic 
arrays, including greater scalability, sim- 
pler programming, and greater fault toler- 
ance. Wavefront arrays constructed at 
Johns Hopkins University and at the Stan- 
dard Telecommunications Company and 
Royal Signals and Radar Establishment (in 
the United Kingdom) should facilitate 
further assessment of wavefront arrays’ 
proposed advantages. 

T he diversity of recently intro- 
duced parallel computer architec- 
tures confronts the interested 

observer with what R.W. Hackney has 
felicitously termed “a confusing menag- 
erie of computer designs.” 

This discussion has tried to address the 
difficulty of understanding these diverse 
parallel architecture designs. An underly- 
ing goal was to explain how the principal 
types of parallel architectures work. The 
informal taxonomy of parallel architecture 
types proposed here is meant to show that 
the parallel architectures reviewed define a 
coherent spectrum of architectural altema- 
tives. The discussion shows that parallel 
architectures embody fundamental organ- 
izing principles for concurrent execution, 
rather than disparate collections of hard- 
ware and software features.m 
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