
SURVEY & TUTORIAL SERIES

A Survey of
Parallel Computer

Architectures
Ralph Duncan, Control Data Corporation

T
1976s. The recent proliferation of parallel

his decade has witnessed the in-
troduction of a wide variety of
new computer architectures for

parallel processing that complement and
extend the major approaches to parallel
computing developed in the 1960s and

The diversity of

architectures can
parallel computer

* Include pipelined vector processors
and other architectures that intuitively
seem to merit inclusion as parallel
architectures, but which are difficult to
gracefully accommodate within
Flvnn’s scheme. i

processing technologies has included new
parallel hardware architectures (systolic bewilder the non- We will examine each of these impera-

tives as we seek a definition that satisfies
and hypercube), interconnection technolo- specialist. This tutorial all of them and provides the basis for a
gies (multistage switching topologies), reasonable taxonomy.
and programming paradigms (applicative reviews alternative
programming). The sheer diversity of the
field poses a substantial obstacle to the
nonspecialist who wishes to comprehend
what kinds of parallel architectures exist
and how their relationship to one another
defines an orderly schema.

This discussion attempts to place recent
architectural innovations in the broader
context of parallel architecture develop-
ment by surveying the fundamentals of
both newer and more established parallel
computer architectures and by placing
these architectural alternatives in a coher-
ent framework. The survey’s primary
emphasis concerns architectural con-
structs rather than specific parallel ma-
chines.

Terminology and
taxonomy

Problems. Diverse definitions have
been proposed for parallel architectures.

approaches to parallel
processing within the
framework of a high-

level taxonomy.

The difficulty in precisely defining the
term is intertwined with the problem of
specifying a parallel architecture taxon-
omy. A central problem for specifying a
definition and consequent taxonomy for
modern parallel architectures is to satisfy
the following set of imperatives:

l Exclude architectures incorporating
only low-level parallel mechanisms
that have become commonplace fea-
tures of modern computers.

l Maintain elements of Flynn’s useful
taxonomy’ based on instruction and
data streams.

Low-level parallelism. There are two
reasons to exclude machines that employ
only low-level parallel mechanisms from
the set of parallel architectures. First, fail-
ure to adopt a more rigorous standard might
make the majority of modern computers
“parallel architectures,” negating the
term’s usefulness. Second, architectures
having only the features listed below do
not offer an explicit, coherent framework
for developing high-level parallel solu-
tions:

l Instruction pipelining - the decom-
position of instruction execution into a
linear series of autonomous stages,
allowing each stage to simultaneously
perform a portion of the execution
process (such as decode, calculate ef-
fective address, fetch operand, exe-
cute, and store).

l Multiple CPU functional units -
providing independent functional
units for arithmetic and Boolean

February 1990 001X-Yl62/YO/O200-CWSSOI .OO 0 1990 IEEE 5

-E
Vector

Synchronous
S’MD -[;~;;;:Z,,,

Systolic

t

MIMDKSIMD

Dataflow

MIMD paradigm

Reduction

Wavefront

Figure 1. High-level taxonomy of parallel computer architectures.

operations that execute concurrently.
9 Separate CPU and II0 processors -

freeing the CPU from I/O control re-
sponsibilities by using dedicated I/O
processors; solutions range from rela-
tively simple I/O controllers to com-
plex peripheral processing units.

Although these features contribute signifi-
cantly to performance engineering, their
presence does not make a computer a par-
allel architecture.

Flynn’s taxonomy. Flynn’s taxonomy
classifies architectures on the presence of
single or multiple streams of instructions
and data. This yields the four categories
below:

SISD (single instruction, single data
stream) - defines serial computers.

MISD (multiple instruction, single data
stream) - would involve multiple
processors applying different instruc-
tions to a single datum; this hypotheti-
cal possibility is generally deemed
impractical.

SIMD (single instruction, multiple data
streams) - involves multiple proces-
sors simultaneously executing the
same instruction on different data (this
definition is discussed further prior to
examining array processors below).

6

MIMD (multiple instruction, multiple
data streams) - involves multiple
processors autonomously executing
diverse instructions on diverse data.

Although these distinctions provide a
useful shorthand for characterizing archi-
tectures, they are insufficient for classify-
ing various modern computers. For ex-
ample, pipelined vector processors merit
inclusion as parallel architectures, since
they exhibit substantial concurrent arith-
metic execution and can manipulate hun-
dreds of vector elements in parallel. How-
ever, they are difficult to accommodate
within Flynn’s taxonomy, because they
lack processors executing the same in-
struction in SIMD lockstep and lack the
asynchronous autonomy of the MIMD
category.

Definition and taxonomy. A first step
to providing a satisfactory taxonomy is to
articulate a definition of parallel architec-
ture. The definition should include appro-
priate computers that the Flynn schema
cannot handle and exclude architectures
incorporating only low-level parallelism.
Therefore, aparallel architecture provides
an explicit, high-level framework for the
development of parallel programming so-
lutions by providing multiple processors,
whether simple or complex, that cooperate

to solve problems through concurrent
execution.

Figure 1 shows a taxonomy based on the
imperatives discussed earlier and the pro-
posed definition. This informal taxonomy
uses high-level categories to delineate the
principal approaches to parallel computer
architectures and to show that these ap-
proaches define a coherent spectrum of
architectural alternatives. Definitions for
each category are provided below.

This taxonomy is not intended to sup-
plant efforts to construct more fully articu-
lated taxonomies. Such taxonomies pro-
vide comprehensive subcategories to re-
flect permutations of architectural charac-
teristics and to cover lower level features.
The “Further reading” section at the end
references several thoughtful taxonomic
studies that address these goals.

Synchronous
architectures

Synchronous parallel architectures co-
ordinate conculrent operations in lockstep
through global clocks, central control
units, or vector unit controllers.

Pipelined vector processors. The first
vector processor architectures were devel-
oped in the late 1960s and early 1970s2,’ to
directly support massive vector and matrix
calculations. Vector processor? are char-
acterized by multiple, pipelined functional
units, which implement ‘arithmetic and
Boolean operations for both vectors and
scalars and which can operate concur-
rently. Such architectures provide parallel
vector processing by sequentially stream-
ing vector elements through a functional
unit pipeline and by streaming the output
results of one unit into the pipeline of
another as input (a process known as
“chaining”).

A representative architecture might
have a vector addition unit consisting of
six pipeline stages (see Figure 2). If each
pipeline stage in the hypothetical architec-
ture shown in the figure has a cycle time of
20 nanoseconds, then 120 ns elapse from
the time operands al and bl enter stage 1
until result cl is available. When the pipe-
line is filled, however, a result is available
every 20 ns. Thus, start-up overhead of
pipelined vector units has significant per-
formance implications. In the case of the
register-to-register architecture depicted,
special high-speed vector registers hold
operands and results. Efficient perforrn-
ante for such architectures (for example,

COMPUTER

the Cray- 1 and Fujitsu VP-200) is obtained
when vector operand lengths are multiples
of the vector register size. Memory-to-
memory architectures (such as the Control
Data Cyber 205 and Texas Instruments
Advanced Scientific Computer) use spe-
cial memory buffers instead of vector
registers.

Recent vector processing supercomput-
ers (such as the Cray X-MP/4 and ETA- 10)
unite four to 10 vector processors through
a large shared memory. Since such archi-
tectures can support task-level parallel-
ism, they could arguably be termed MIMD
architectures, although vector processing
capabilities are the fundamental aspect of
their design.

SIMD architectures. SIMD architec-
tures (see Figure 3) typically employ a
central control unit, multiple processors,
and an interconnection network (IN) for
either processor-to-processor or proces-
sor-to-memory communications. The con-
trol unit broadcasts a single instruction to
all processors, which execute the instruc-
tion in lockstep fashion on local data. The
interconnection network allows instrtic-
tion results calculated at one processor to
be communicated to another processor for
use as operands in a subsequent instruc-
tion. Individual processors may beallowed
to disable the current instruction.

Processor array architectures. Proces-
sor arrays’ structured for numerical SIMD
execution have often been employed for
large-scale scientific calculations, such as
image processing and nuclear energy
modeling. Processor arrays developed in
the late 1960s (such as the Illiac-IV) and
more recent successors (such as the Bur-
roughs Scientific Processor) utilize proc-
essors that accommodate word-sized oper-
ands. Operands are usually floating-point
(or complex) values and typically range in
size from 32 to 64 bits. Various IN schemes
have been used to provide processor-to-
processor or processor-to-memory com-
munications, with mesh and crossbar ap-
proaches being among the most popular.

One variant of processor array architec-
tures involves using a large number of one-
bit processors. In bit-plane architectures,
the array of processors is arranged in a
symmetrical grid (such as 64x64) and as-
sociated with multiple “planes” of mem-
ory bits that correspond to the dimensions
of the processor grid (see Figure 4).
Processor n (P,), situated in the processor
grid at location (x, y), operates on the
memory bits at location (x, y) in all the

February 1990

Vector
register A

b-l . I . .
a9

a10
Vector addition pipeline

ST1 ST2 ST3 ST4 ST5 ST6
Vector

register 6 a8 a7 a6 a5

II/

c4 c3
bl b8 b7 b6 b5

.

register C

cl

c2 I
Figure 2. Register-to-register vector architecture operation.

Instruction Data
stream stream

I I I I

c -r
/ \

Control Add rl ,b I
unit l P * *

N
i /

Add rl ,b
* P 4 *

-0 M

-0

M

-0

M

Figure 3. SIMD execution.

1 -bit
serial Memory

processors bit planes

I 1 I I

P”

Plane, Plane2 Plane,

Figure 4. Bit-plane array processing.

I
Associative

memory

Figure 5. Associative memory processing organization.

associated memory planes. Usually, op-
erations are provided to copy, mask, and
perform arithmetic operations on entire
memory planes, as well as on columns and
rows within a plane.

Loral’s Massively Parallel Processor’
and ICL’s Distributed Array Processor
exemplify this kind of architecture, which
is often used for image processing applica-
tions by mapping pixels to the memory’s
planar structure. Thinking Machines’
Connection Machine organizes as many as
65,536 one-bit processors as sets of four-
processor meshes united in a hypercube
topology.

Associative memoryprocessor architec-
tures. Computers built around an associa-
tive memory’ constitute a distinctive type
of SIMD architecture that uses special
comparison logic to access stored data in

parallel according to its contents. Research
in constructing associative memories be-
gan in the late 1950s with the obvious goal
of being able to search memory in parallel
for data that matched some specified da-
tum. “Modem” associative memory proc-
essors developed in the early 1970s (for
example, Bell Laboratories’ Parallel Ele-
ment Processing Ensemble, or PEPE) and
recent architectures (for example, Loral’s
Associative Processor, or Aspro) have
naturally been geared to database-oriented
applications, such as tracking and surveil-
lance.

Figure 5 shows the characteristic func-
tional units of an associative memory pro-
cessor. A program controller (serial com-
puter) reads and executes instructions,
invoking a specialized array controller
when associative memory instructions are
encountered. Special registers enable the

program controller and associative mem-
ory to share data.

Most current associative memory pro-
cessors use a bit-serial organization, which
involves concurrent operations on a single
bit-slice (bit-column) of all the words in
the associative memory. Each associative
memory word, which usually has a very
large number of bits (for example, 32,768),
is associated with special registers and
comparison logic that functionally consti-
tute a processor. Hence, an associative
processor with4,096 words effectively has
4,096 processing elements.

Figure 6 depicts a row-oriented com-
parison operation for a generic bit-serial
architecture. A portion of the comparison
register contains the value to be matched.
All of the associative processing elements
start at a specified memory column and
compare the contents of four consecutive
bits in their row against the comparison
register contents, setting a bit in the A
register to indicate whether or not their row
contains a match.

In Figure 7 a logical OR operation is
performed on a bit-column and the bit-
vector in register A, with register B receiv-
ing the results. A zero in the mask register
indicates that the associated word is not to
be included in the current operation.

Systolic architectures. In the early
1980s H.T. Kung of Carnegie Mellon
University proposed systolic architectures
to solve the problems of special-purpose
systems that must often balance intensive
computations with demanding I/O
bandwidths.R Systolic architectures (sys-
tolic arrays) are pipelined multiprocessors
in which data is pulsed in rhythmic fashion

T
Words

1

Comparison register

F
Search pattern

Associative memory

Bit-column
search window

v Bits per word -1

Associative registers
/ \

A
1

0 w 0

0

B

1

Mask

T
Words

Associative memory

+ Bits per word -1

A B
register register

O-1

O-0

ill

l+l

0 0

Mask

Figure 6. Associative memory comparison operation. Figure 7. Associative memory logical OR operation.

8 COMPUTER

Figure 8. Systolic flow of data from
and to memory.

from memory and through a network of
processors before returning to memory
(see Figure 8). A global clock and explicit
timing delays synchronize this pipelined
data flow, which consists of operands ob-
tained from memory and partial results to
be used by each processor. Modular pro-
cessors united by regular, local intercon-
nections provide basic building blocks for
a variety of special-purpose systems. Dur-
ing each time interval, these pfocessors
execute a short, invariant sequence of in-
structions.

h

ae
+
cf

C

* ag

f 9

v _ v
b

d be * 0

(cl

ae
+
cf

ag
* +

ch

h

v
be
+
df

v

d
* bg

Cd)

Systolic arrays address the performance
requirements of special-purpose systems
by achieving significant parallel computa-
tion and by avoiding I/O and memory
bandwidth bottlenecks. A high degree of
parallelism is obtained by pipelining data
through multiple processors, typically in
two-dimensional fashion. Systolic archi-
tectures maximize the computations per-
formed on a datum once it has been ob-
tained from memory or an external device.
Hence, once a datum enters the systolic
array, it is passed to any processor that
needs it, without an intervening store to
memory. Only processors at the topologi-
cal boundaries of the array perform I/O to
and from memory.

m-c-l cation*

Figure 9. Systolic matrix multipli-

(e)

Figure 9a-e shows how a simple systolic
array could calculate the outer product of
two matrices,

A=labl and B=lefl
lcdl lghl

The zero inputs shown moving through the
array are used for synchronization. Each
processor begins with an accumulator set
to zero and, during each cycle, adds the
product of its two inputs to the accumula-
tor. After five cycles the matrix product is
complete.

rithm-specific architectures, particularly processors that can execute independent
for signal processing. In addition, pro- instruction streams, using local data. Thus,
grammable (reconfigurable) systolic MIMD computers support parallel solu-
architectures (such as Carnegie Mellon’s tions that require processors to operate in a
Warp and Saxpy’s Matrix-l) have been largely autonomous manner. Although
constructed that are not limited to imple- software processes executing on MIMD
menting a single algorithm. Although sys- architectures are synchronized by passing
tolic concepts were originally proposed for messages through an interconnection net-
VLSI-based systems to be implemented at work or by accessing data in shared mem-
the chip level, systolic architectures have ory units, MIMD architectures are asyn-
been implemented at a variety of physical chronous computers, characterized by
levels. decentralized hardware control.

MIMD architectures
A growing number of special-purpose

systems use systolic organization for algo- MIMD architectures employ multiple

The impetus for developing MIMD
architectures can be ascribed to several
interrelated factors. MIMD computers
support higher level parallelism (subpro-
gram and task levels) that can be exploited

February 1990 9

f
e

h

ca

db0 db

I M 0 M

by “divide and conquer” algorithms organ-
ized as largely independent subcalcula-
tions (for example, searching and sorting).
MIMD architectures may provide an alter-
native to depending on further implemen-
tation refinements in pipelined vector
computers to provide the significant per-
formance increases needed to make some
scientific applications tractable (such as
three-dimensional fluid modeling). Fi-
nally, the cost-effectiveness of n-proces-
sor systems over n single-processor sys-
tems encourages MIMD experimentation.

Distributed memory architectures.
Distributed memory architectures (Figure
10) connect processing nodes (consisting

Figure 10. MIMD distributed memory of an autonomous processor and its local
architecture structure. memory) with a processor-to-processor

(a)

clch (c)

(b)

(4

0 = root

1 = level 1

2 = level 2

Figure 11. MIMD interconnection network topologies: (a) ring; (b) mesh;
(c) tree; (d) hypercube; (e) tree mapped to a reconfigurable mesh.

interconnection network. Nodes share data
by explicitly passing messages through the
interconnection network, since there is no
shared memory. A product of 1980s re-
search, these architectures have princi-
pally been constructed in an effort to pro-
vide a multiprocessor architecture that will
“scale” (accommodate a significant in-
crease in processors) and will satisfy the
performance requirements of large scien-
tific applications characterized by local
data references.

Various interconnection network to-
pologies have been proposed to support
architectural expandability and provide
efficient performance for parallel pro-
grams with differing interprocessor com-
munication patterns. Figure 1 la-e depicts
the topologies discussed below.

Ring topology architectures. The com-
munication diameter (N/2) of ring topol-
ogy architectures can be reduced by adding
chordal connections. Using chordal con-
nections or multiple rings can increase a
ring-based architecture’s fault tolerance.
Typically, fixed-size message packets are
used that include a node destination field.
Ring topologies are most appropriate for
a small number of processors executing
algorithms not dominated by data com-
munications.

Mesh topology architectures. A two-
dimensional mesh, or lattice, topology has
n2 nodes, each connected to its four imme-
diate neighbors. Wraparound connections
at the edges are sometimes provided to
reduce the communication diameter from
2(n-1) to 2 * (Integer-part of n/2). Com-
munications may be augmented by provid-
ing additional diagonal links or by using
buses to connect nodes by rows and col-
umns. The topological correspondence
between meshes and matrix-oriented algo-
rithms encourages mesh-based architec-
ture research.

Tree topology architectures. Tree topol-
ogy architectures, such as Columbia Uni-
versity’s DAD02 and Non-Von, have been
constructed to support divide-and-conquer
algorithms for searching and sorting, im-
age processing algorithms, and dataflow
and reduction programming paradigms.
Although a variety of tree-structured to-
pologies have been suggested, complete
binary trees are the most analyzed variant.

Several strategies have been employed
to reduce the communication diameter of
tree topologies (2(n-1) for a complete
binary tree with n levels and 2”-1 pro-

COMPUTER 10

cessors). Example solutions include add-
ing additional interconnection network
pathways to unite all nodes at the same
tree level.

Hypercuhe topology architectures. A
Boolean n-cube or “hypercube” topology
uses N = 2” processors arranged in an n-
dimensional cube, where each node has
n=logzN bidirectional links to adjacent
nodes. Individual nodes are uniquely iden-
tified by n-bit numeric values ranging from
0 to N-l and assigned in a manner that
ensures adjacent nodes’ values differ by a
single bit. The communication diameter of
such a hypercube topology architecture is
n=log>N.

Hypercube architecture research has
been strongly influenced by the desire to
develop a “scalable” architecture that sup-
ports the performance requirements of 3D
scientific applications. Extant hypercube
architectures include the Cosmic Cube,
Ametek Series 2010, Intel Personal Super-
computer, and Ncube/lO.

Reconfigurahle topology architectures.
Although distributed memory architec-
tures possess an underlying physical topol-
ogy, reconfigurable topology architectures
provide programmable switches that allow
users to select a logical topology matching
application communication patterns. The
functional reconfigurability available in
research prototypes ranges from specify-
ing different topologies (such as Lawrence
Snyder’s Configurable Highly Parallel
Computer, or Chip) to partitioning a base
topology into multiple interconnection
topologies of the same type (such as
Howard J. Siegel’s Partitionable SIMD/
MIMD System, or Pasm). A significant
motivation for constructing reconfigurable
topology architectures is that a single
architecture can act as many special-pur-
pose architectures that efficiently support
the communications patterns of particular
algorithms or algorithm steps.

Shared-memory architectures.
Shared memory architectures accomplish
interprocessor coordination by providing a
global, shared memory that each processor
can address. Commercial shared-memory
architectures, such as Flexible Corpora-
tion’s Flex/32 and Encore Computer’s
Multimax, were introduced during the
1980s. These architectures involve mul-
tiple general-purpose processors sharing
memory, rather than a CPU and peripheral
I/O processors. Shared memory computers
do not have some of the problems encoun-

February 1990

tered by message-passing architectures,
such as message sending latency as data is
queued and forwarded by intermediate
nodes. However, other problems, such as
data access synchronization and cache
coherency, must be solved.

Typically, each processor in a shared

Coordinating processors with shared
variables requires atomic synchronizing
mechanisms to prevent one process from
accessing a datum before another finishes
updating it. These mechanisms provide an
atomic operation that subjects a “key” to a
comparison test before allowing either the
key or associated data to be updated. The
“test-and-set” mechanism, for example, is
an atomic operation for testing the key’s
value and, if the test result is true, updating
the key value.

memory architecture also has a local
memory used as a cache. Multiple copies
of the same shared memory data, therefore,
may exist in various processors’ caches at
a given time. Maintaining a consistent
version of such data is the cache coherency
problem, which concerns providing new
versions of the cached data to each in-
volved processor whenever a processor
updates its copy. Although systems with a
small number of processors can use hard-
ware“snooping”mechanisms todetermine
when shared memory data has been up-
dated, larger systems usually rely on soft-
ware solutions to minimize performance
impact.

sors to shared memory (outlined below).

Figure 12a-c illustrates some major al-
ternatives for connecting multiple proces-

P P P

Cache Cache Cache

I I I

I
Bus

MO Ml M2

(4

(4

Figure 12. MIMD shared-memory interconnection schemes: (a) bus interconnec-
tion; (b) 2x2 crossbar; (c) 8x8 omega MIN routing a P, request to M,.

11

MIMD operation node

SIMD controller node

SIMD slave processors

Figure 13. MIMD/SIMD operation.

Bus interconnections. Time-shared
buses (Figure 12a) offer a fairly simple
way to give multiple processors access to a
shared memory. A single, time-shared bus
effectively accommodates a moderate
number of processors (from four to 20),
since only one processor accesses the bus
at a given time. Some bus-based architec-
tures, such as the experimental Cm* archi-
tecture, employ two kinds of buses - a
local bus linking a cluster of processors
and a higher level system bus linking dedi-
cated service processors associated with
each cluster.

Crossbar interconnections. Crossbar
interconnection technology uses a cross-
bar switch of & crosspoints to connect n
processors to n memories (see Figure 12b).
Processors may contend for access to a
memory location, but crossbars prevent
contention for communication links by
providing a dedicated pathway between
each possible processor/memory pairing.

Power, pinout, and size considerations
have limited crossbar architectures to a
small number of processors (from four to
16). The Alliant FX/8 is a commercial
architecture that uses a crossbar scheme to
connect processors and cache memories.

Multistage interconnection networks.
Multistage interconnection networks
(MINs)~ strike a compromise between the
price/performance alternatives offered by
crossbars and buses. An NxN MIN

12

connects N processors to N memories by
deploying multiple “stages” or banks of
switches in the interconnection network
pathway.

When N is a power of 2, one approach is
to employ log,N stages of N/2 switches,
using 2x2 switches. A processor making a
memory access request specifies the de-
sired destination (and pathway) by issuing
a bit-value that contains a control bit for
each stage. The switch at stage i examines
the ith bit to determine whether the input
(request) is to be connected to the upper or
lower output.

Figure 12c shows an omega network
connecting eight processors and memo-
ries, where a control bit equal to zero in
dicates a connection to the upper output.
Expandability is a significant feature of
such a MIN, since its communication
diameter is proportional to log,N. The
BBN (Bolt, Beranek, and Newman) But-
terfly, for example, can be configured
with as many as 256 processors.

MIMD-based
architectural
paradigms

MIMD/SIMD hybrids, dataflow archi-
tectures, reduction machines, and
wavefront arrays all pose a similar diffi-
culty for an orderly taxonomy of parallel
architectures. Each of these architectural

types is predicated on MIMD principles of
asynchronous operation and concurrent
manipulation of multiple instruction and
data streams. However, each of these ar-
chitectures is also based on a distinctive
organizing principle as fundamental to
its overall design as MIMD characteris-
tics. These architectures, therefore, are
described under the category “MIMD-
based architectural paradigms” to high-
light their distinctive foundations as
well as the MIMD characteristics they
have in common.

MIMD/SIMD architectures. A variety
of experimental hybrid architectures con-
structed during the 1980s allow selected
portions of a MIMD architecture to be
controlled in SIMD fashion (for example,
DADO, Non-Von, Pasm, and Texas Re-
configurable Array Computer, or
TRAC).“’ The implementation mecha-
nisms explored for reconfiguring architec-
tures and controlling SIMD execution are
quite diverse. Using a tree-structured,
message-passing computer’” as the base
architecture for a MIMD/SIMD architec-
ture helps illustrate the general concept.

The master/slaves relation of a SIMD
architecture’s controller and processors
can be mapped onto the node/descendents
relation of a subtree (see Figure 13). When
the root processor node of a subtree oper-
ates as a SIMD controller, it transmits
instructions to descendent nodes that exe-
cute the instructions on local memory data.

The flexibility of MIMD/SIMD archi-
tectures obviously makes them attractive
candidates for further research. Specific
incentives for recent development efforts
include supporting parallel image process-
ing and expert system applications.

Dataflow architectures. The funda-
mental feature of dataflow architectures is
an execution paradigm in which instruc-
tions are enabled for execution as soon as
all of their operands become available.
Thus, the sequence of executed instruc-
tions is based on data dependencies, allow-
ing dataflow architectures to exploit con-
currency at the task, routine, and instruc-
tion levels. A major incentive for dataflow
architecture research, which dates from
J.B. Dennis’ pioneering work in the mid-
197Os, is to explore new computational
models and languages that can be effec-
tively exploited to achieve large-scale
parallelism.

Dataflow architectures execute data-
flow graphs, such as the program fragment
depicted in Figure 14. We can think of

COMPUTER

Node 1 Node 2

Figure 14. Dataflow graph-program
fragment.

graph nodes as representing asynchronous
tasks, although they are often single
instructions. Graph arcs represent com-
munications paths that carry execution
results needed as operands in subsequent
instructions.

Some of the diverse mechanisms used to
implement dataflow computers (such as
the Manchester Data Flow Computer, MIT
Tagged Token Data Flow architecture, and
Toulouse LAU System)” are outlined be-
low. Static implementations load all graph
nodes into memory during initialization
and allow only one instance of a node to be
executed at a time; dynamic architectures
allow the creation of node instances at
runtime and multiple instances of a node to
be executed concurrently.

Some architectures directly store
“tokens” containing instruction results in-
to a template for the instruction that will
use them as operands. Other architectures
use token-matching schemes, in which a
matching unit stores tokens and tries to
match them with instructions. When a
complete set of tokens (all required op-
erands) is assembled for an instruction,
an instruction template containing the
relevant operands is created and queued
for execution.

Figure 15 shows how a simplified token-
matching architecture might process the
program fragment shown in Figure 14. At
step 1, the execution of (3*a) results in the
creation of a token that contains the result
(15) and an indication that the instruction
at node 3 requires this as an operand. Step
2 shows the matching unit that will match
this token and the result token of (5*h) with
the node 3 instruction. The matching unit
creates the instruction token (template)

shown at step 3. At step 4, the node store
unit obtains the relevant instruction op-
code from memory. The node store unit
then fills in the relevant token fields (step
5), and assigns the instruction to a proces-
sor. The execution of the instruction will
create a new result token to be used as
input to the node 4 instruction.

Reduction architectures. Reduction,
or demand-driven, architecturesI imple-
ment an execution paradigm in which an
instruction is enabled ior execution when
its results are required as operands for
another instruction already enabled for
execution. Most reduction architecture
research began in the late 1970s to explore
new parallel execution paradigms and to
provide architectural support for applica-
tive (functional) programming languages.

Reduction architectures execute pro-
grams that consist of nested expressions.
Expressions are recursively defined as lit-
erals or function applications on argu-
ments that may be literals or expressions.

Programs may “reference” named expres-
sions, which always return the same value
(the referential transparency property).
Reduction programs are function applica-
tions constructed from primitive functions.

Reduction program execution consists
of recognizing reducible expressions, then
replacing them with their calculated val-
ues. Thus, an entire reduction program is
ultimately reduced to its result. Since the
general execution paradigm only enables
an instruction for execution when its re-
sults are needed by a previously enabled
instruction, some additional rule is needed
to enable the first instruction(s) and begin
computation.

Practical challenges for implementing
reduction architectures include synchro-
nizing demands for an instruction’s results
(since preserving referential transparency
requires calculating an expression’s re-
sults once only) and maintaining copies of
expression evaluation results (since an
expression result could be referenced
more than once but could be consumed

Figure 15. Dataflow token-matching example.

February 1990 13

Node 1

Demand
Need: b
Lot: 1
/

Demand
Need: c
Lot: 1

\

Demand
Need: d
Lot: 2

Demand
Need: e
Lot: 2

Demand
Need: f
Lot: 5

Demand
Need: g
Lot: 5

‘Memory’
store
d: 1

/

‘Memory
store
e: 3

\ /

‘Memory’
store

f: 5
/

‘Memory’
store
g: 7

L /

Node 1

Result
Value: 4
Dest: 1

f

Result
Value: 35

Dest: 1

2
Node 2 Node 5 h

Node

a f

Memory
store
f: 5

6 Node 7

\

Figure 16. Reduction architecture demand token production. Figure 17. Reduction architecture result token production.

by subsequent reductions upon first being
delivered).

Reduction architectures employ either
string reduction or graph reduction to
implement demand-driven paradigms.
String reduction involves manipulating
literals and copies of values, which are
represented as strings that can be dynam-
ically expanded and contracted. Graph
reduction involves manipulating literals
and references (pointers) to values. Thus,
a program is represented as a graph, and
garbage collection reclaims dynamically
allocated memory as the reduction
proceeds.

a=+bc;
b=+de;
c=*fg;
d=l;e=3;f=5;g=7.

Rather dissimilar architectures (such as
the Newcastle Reduction Machine, North
Carolina Cellular Tree Machine, and Utah
Applicative Multiprocessing System)
have been proposed to support both string-
and graph-reduction approaches.

Figures 16 and 17 show a simplified
version of a graph-reduction architecture
that maps the program below onto tree-
structured processors and passes tokens
that demand or return results. Figure 16
depicts all the demand tokens produced
by the program, as demands for the values
of references propagate down the tree. In
Figure 17, the last two result tokens
produced are shown as they are passed to
the root node.

Wavefront array architectures.
Wavefront array processors’j combine
systolic data pipelining with an asynchro-
nous dataflow execution paradigm. S-Y.
Kung developed wavefront array concepts
in the early 1980s to address the same kind
of problems that stimulated systolic array
research - producing efficient, cost-ef-
fective architectures for special-purpose
systems that balance intensive computa-
tions with high I/O bandwidth (see the
systolic array section above).

and regular, local interconnection net-
works. However, wavefront arrays replace
the global clock and explicit time delays
used for synchronizing systolic data pipe-
lining with asynchronous handshaking as
the mechanism for coordinating inter-
processor data movement. Thus, when a
processor has performed its computations
and is ready to pass data to its successor, it
informs the successor, sends data when the
successor indicates it is ready, and receives
an acknowledgment from the successor.
The handshaking mechanism makes com-
putational wavefronts pass smoothly
through the array without intersecting, as
the array’s processors act as a wave propa-
gating medium. In this manner, correct
sequencing of computations replaces the
correct timing of systolic architectures.

Wavefront and systolic architectures are
both characterized by modular processors

Figure 18a-c depicts wavefront array
concepts, using the matrix multiplication
example used earlier to illustrate systolic
operation (Figure 9). The example archi-
tecture consists of processing elements
(PEs) that have a one-operand buffer for
each input source. Whenever the buffer for

14 COMPUTER

a memory input source is empty and the
associated memory contains another oper-
and, that available operand is immediately
read. Operands from other PEs are ob-
tained using a handshaking protocol.

Figure 18a shows the situation after
memory input buffers are initially filled. In
Figure 18b PE(1,l) adds the product ae to
its accumulator and transmits operands a
and e to neighbors; thus, the first computa-
tional wavefront is shown propagating
from PE(l,l) to PE(1,2) and PE(2,l). Fig-
ure 18~ shows the first computational
wavefront continuing to propagate, while a
second wavefront is propagated by
PE(l,l).

*a 0 0

Kung argued I3 that wavefront arrays
enjoy several advantages over systolic
arrays, including greater scalability, sim-
pler programming, and greater fault toler-
ance. Wavefront arrays constructed at
Johns Hopkins University and at the Stan-
dard Telecommunications Company and
Royal Signals and Radar Establishment (in
the United Kingdom) should facilitate
further assessment of wavefront arrays’
proposed advantages.

T he diversity of recently intro-
duced parallel computer architec-
tures confronts the interested

observer with what R.W. Hackney has
felicitously termed “a confusing menag-
erie of computer designs.”

This discussion has tried to address the
difficulty of understanding these diverse
parallel architecture designs. An underly-
ing goal was to explain how the principal
types of parallel architectures work. The
informal taxonomy of parallel architecture
types proposed here is meant to show that
the parallel architectures reviewed define a
coherent spectrum of architectural altema-
tives. The discussion shows that parallel
architectures embody fundamental organ-
izing principles for concurrent execution,
rather than disparate collections of hard-
ware and software features.m

(b)

Acknowledgments
Particular thanks are due Lawrence Snyder

and the referees for constructive comments.
Thanks go to the following individuals for
providing research materials, descriptions of
parallel architectures, and insights: Theodore
Bashkow, Laxmi Bhuyan, Jack Dongarra, Paul
Edmonds, Scott Fahlman, Dennis Gannon, E.
Allen Garrard, H.T. Kung, G.J. Lipovski, David
Lugowski, Miroslaw Malek, Robert Masson,

(4

Figure 18. Wavefront array matrix multiplication.

February 1990 15

Susan Miller, James Peitrocini, Malcolm Rim- L. Snyder, “A Taxonomy of Synchronous Paral-
mer, Howard J. Siegel, Charles Seitz, Vason lel Machines,” Proc. 17th Int’i Conf. Parallel
Srini, Salvatore Stolfo, David Waltz, and Jon Processing, University Park, Penn., August.
Webb. 1988.

This research was supported by the Rome Air
Development Center under contract F30602-
87-D-0092.

References
Further reading
J.J. Dongarra, ed., Experimental Parallel
Computing Architectures, North-Holland,
Amsterdam. 1987.

R.W. Hackney. “Classification and Evaluation
of Parallel Computer Systems,” in Springer-
Verlag Lecture Notes in Computer Science, No.
295, 1987, pp. 13-25.

D.J. Kuck, “High-speed Machines and Their
Compilers,” in Parallel Processing Systems, D.
Evans, ed., Cambridge Univ. Press, 1982.

J. Schwartz, “A Taxonomic Table of Parallel
Computers, Based on 55 Designs,” Courant
Institute, NYU, New York, Nov. 1983.

1. M.J. Flynn, “Very High Speed Computing
Systems,” Proc. IEEE, Vol. 54, 1966, pp.
1901-1909.

2. W.J. Watson, “The ASC - A Highly
Modular Flexible Super Computer
Architecture,” Proc. AFIPS FJCC, 1972,
pp. 22 l-228.

3. N.R. Lincoln, “A Safari through the Con-
trol Data Star-100 with Gun and Camera,”
Proc. AFIPS NCC. June 1978.

4. K. Hwang, ed., Tutorial Supercomputers:
Design and Applications, Computer Soci-
ety Press, Los Alamitos, Calif., 1984.
(Chapters 1 and 2 contain salient articles on
vector architectures.)

D.B. Skillicorn, “A Taxonomy for Computer 5. K. Hwang and F. Briggs, Computer Archi-
Architectures,” Computer, Vol. 21, No. 11, tectures and Parallel Processing. McGraw-
Nov. 1988, pp. 46-57. Hill, New York, 1984.

1 Please send my first lnmac catalog today!

W Guaranteed-Delivery m Instant Credi
n Over 3000 Products

To Choose From
n 45 Day

Product Trial

I
N2lllW me

company I

I

Street Address/l?O. Box

yY state
)

Zip

Area Code Phone No. Swo202 I

6. K.E. Batcher, “Design of a Massively Paral-
lel Processor,” IEEE Trans. Computers,
Vol. C-29, Sept. 1980, pp. 836-844.

7. T. Kohonen, Content-Addressable Memo-
ries, 2nd edition, Springer-Verlag, New
York, 1987.

8. H.T. Kung, “Why Systolic Architectures?,”
Computer, Vol. 15, No. 1, Jan. 1982, pp. 37-
46.

9. H.J. Siegel, Interconnection Networks for
Large-Scale Parallel Processing: Theory
and Case Studies, Lexington Books, Lex-
ington, Mass., 1985.

10. S.J. Stolfo and D.P. Miranker, “The DAD0
Production System Machine,” J. Parallel
and Distributed Computing, Vol. 3, No. 2,
June 1986, pp. 269-296.

11. V. Srini, “An Architectural Comparison of
Dataflow Systems,” Computer, Vol. 19,
No. 3, Mar. 1986, pp. 68-88.

12. P.C. Treleaven, D.R. Brownbridge, and
R.P. Hopkins, “Data-Driven and Demand-
Driven Computer Architecture,” ACM
Computing Surveys, Vol. 14, No. 1, Mar.
1982, pp. 93-143.

13. S-Y. Kung et al., “Wavefront Array Proces-
sors - Concept to Implementation,” Com-
puter, Vol. 20, No. 7, July 1987, pp. 18-33.

14. G.J. Lipovski and M. Malek, Parallel
Computing: Theory and Comparisons,
Wiley and Sons, New York, 1987. (Includes
reprints of original papers describing recent
parallel architectures.)

Ralph Duncan is a system software design
consultant with Control Data’s Government
Systems Group. His recent technical work has
involved fault-tolerant operating systems, par-
allel architectures, and automated code genera-
tion.

Duncan holds an MS degree in information
and computer science from the Georgia Insti-
tute of Technology, an MA from the University
of California at Berkeley, and a BA from the
University of Michigan. He is a member of the
IEEE and the Computer Society.

Readers may contact the author at Control
Data Corp., Government Systems, 300 Em-
bassy Row, Atlanta, GA 30328.

COMPUTER
Reader Service Number 2

