
The three overviews that follow are short reports of 
ongoing research in image understanding architecture, 

SIMD parallelism in computer vision, and software 
environments for parallel computer vision. 
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arallel processing is now gen- 
erally accepted as necessary to 
support real-time image under- 

standing applications. Much debate re- 
mains, however, about what form of 
parallelism to employ. Part of this de- 
bate stems from the tremendous amount 
and variety of potential parallelism in 
machine vision. 

The sensory data alone is a good ex- 
ample: a medium-resolution image (512 
x 512 pixels) consists of roughly a quar- 
ter of a million data values. In many 
cases, each of these values might be 
processed in parallel. Further, if images 
are obtained from a video camera, the 
steady stream of data lends itself to 
pipelined parallelism. Some data in- 
volves multiple sensors (for example, 
stereo or nonvisual spectral bands), thus 
providing yet another potential source 
of parallelism. Nor is it unusual to ex- 
tract many different features from a 
given image or set of images (for exam- 
ple, lines, regions, texture patches, depth 
maps, and motion parameters), and these 
processes may also be carried out in 
parallel. 

Beyond the sensory data, image un- 
derstanding involves knowledge-based 
processing; and between these two lev- 
els of abstraction, symbolic processing 
has proved useful. Thus, vision research- 
ers tend to classify algorithms and rep- 
resentations into three levels: low (sen- 
sory), intermediate (symbolic), and high 
(knowledge-based). 

Of course, the existence of multiple 
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levels of abstraction is yet another source 
of potential parallelism. Moreover, pro- 
cessing within each level presents many 
possibilities for exploiting parallelism. 
Part of the allure of developing a vision 
machine. from a computer architect’s 
perspective, is this tremendous quanti- 
ty. diversity, and complexity of latent 
parallelism. By comparison, most scien- 
tific and engineering applications have 
simple organizations with straightfor- 
ward requirements for parallelism. (For 
more detailed analysis of the potential 
for parallelism in image understanding, 
see Weems.‘) 

Image Understanding Architecture. 
Over the past five years, the University 
of Massachusetts and Hughes Research 
Laboratories have worked together to 
develop a hardware architecture that 
addresses at least part of the potential 
parallelism in each of the three levels of 
vision abstraction. A 1/64th-scale proof- 
of-concept prototype of this machine 
has been built and is shown in Figure 1. 
The machine, called the Image Under- 
standing Architecture (IUA), consists 
of three different, tightly coupled paral- 
lel processors: the content addressable 
array parallel processor (CAAPP) at 
the low level. the intermediate commu- 
nication associative processor (ICAP) 
at the intermediate level, and the sym- 
bolicprocessing array (SPA) at the high 
level. Figure 2 shows an overview of the 
architecture. The CAAPP and ICAP 
levels are controlled by an array control 

unit (ACU) that takes its directions from 
the SPA level. 

The SPA is a multiple-instruction 
multiple-data (MIMD) parallel proces- 
sor. while the intermediate and low lev- 
els operate in multiple modes. The 
CAAPP operates in single-instruction 
multiple-data (SIMD) associative or 
multiassociative mode, and the ICAP 
operates in single-program multiple-data 
(SPMD) or MIMD mode. In multiasso- 
ciative mode, CAAPP cells execute the 
same instruction stream but in disjoint 
groups. with each group capable of op- 
erating on locally broadcast values and 

Figure 1. First-generation prototype of 
the Image Understanding Architecture. 
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l Controls CAAPP and ICAP. 
l Takes commands from SPA. 
l Receives global summary 

information. 

l Knowledge base, blackboard. 

l 64 RISC processors (MIMD). 
l Instantiation of schema strategies. 
l Construction of scene interpretation. 

l Top-down MIMD control of grouping. 

l 64 x 64 (4K) array of 16-bit 

l &%%~D operation. 
l Executes grouping processes. 

l Stores extracted image events. 

l 512 x 512 (256K) array of l-bit 

ii 
recessing elements. 

l IMD associative/multiassociative. 
l Processes sensory data. 

l Stores 15 seconds of imagery 

Figure 2. Overview of first-generation Image Understanding Architecture. 

locally computing its own summary val- 
ues in parallel with all other groups. In 
SPMD mode, the ICAP processors exe- 
cute the same program but have their 
own instruction pointers so that they 
can branch independently. 

How does the IUA address the vari- 
ous forms of potential parallelism de- 
scribed in our introduction? We will 
answer this question by considering the 
capabilities of each level in Figure 2. 
The I/O staging memory permits one or 
more sensors to input images into a 
buffer that can hold up to 15 seconds of 
imagery at 30 frames per second and a 
resolution equal to the size of the low- 
level processor array. The resolution of 
the images can differ from the array 
size, with a resulting increase or de- 
crease in the number of frames that can 
be buffered. 

The CAAPP consists of bit-serial pro- 
cessors, each with an arithmetic logic 
unit, registers, 320 bits of explicitly man- 
aged on-chip cache memory, and 32 Kbits 
of backing store (main) memory. Be- 
cause it is a SIMD processor, its instruc- 
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tions are broadcast from the ACU. 
However, each processor also contains 
a one-bit register that controls whether 
it will respond to a particular instruc- 
tion. 

The processors are connected via a 
reconfigurable mesh, called the coterie 
network. Each processor controls four 
switches that configure the mesh con- 
nections to its four nearest neighbors 
(north, south, east, west) and four switch- 
es that permit signals to bypass the pro- 
cessor (northeast, northwest, horizon- 
tal, and vertical). When the switches are 
set, connected processors form a cote- 
rie. The mesh may simultaneously con- 
tain many nonoverlapping coteries. 

Within a coterie, one processor may 
be selected to broadcast a value to the 
members of the coterie, or any subset of 
the processors may send a value bit- 
serially over the network. In the latter 
case, the processors receive the logical 
OR of the bits that were transmitted - 
that is, if some of the processors trans- 
mit a 1, then all processors receive a 1; 
but if none of the processors transmits a 

1, then all processors receive 0. This 
some/none test is a valuable summary 
mechanism that can be used in many 
ways. For example, it can be used to 
determine the maximum of a set of val- 
ues contained in a coterie. 

If the array has been split into cote- 
ries corresponding to regions in an im- 
age, then we can use the maximum- 
value operation to label connected 
components. Each processor is merely 
given a unique value (its address) and 
then the maximum-value operation de- 
termines the maximum address within 
each coterie. The value is then broad- 
cast to the members of the coterie as 
their component label. Note that all of 
this takes place in every coterie simulta- 
neously, even though there is only a 
single instruction stream. In the CAAPP, 
connected-components labeling thus 
takes only about 50 microseconds. Many 
other operations on image regions and 
edges can be performed quickly when 
the network is arranged to match their 
shape. The ability to simultaneously 
perform queries and summarize results 
in independent groups of processors 
under a single instruction stream result- 
ed in the term multiassociative for this 
mode of parallelism. 

The main memory for the CAAPP is 
also directly accessible to the ICAP 
through a second port. Each ICAP pro- 
cessor has access to the 8 x 8 tile of 
CAAPP processors below it, providing 
a highly parallel data path between the 
two levels. Each ICAP processor is a 16- 
bit digital signal processor (DSP) with 
128 Kbytes of program memory and 128 
Kbytes of data memory. We selected a 
DSP because it provides a set of opera- 
tions (such as single-cycle square and 
add) that are well suited to computa- 
tions in spatial geometry. The DSP is 
also designed for use with a min imum 
amount of external logic, and it pro- 
vides a set of communication channels 
that are used for interprocessor com- 
munication. As an example of its capa- 
bilities, the intermediate level can si- 
multaneously match several thousand 
models against symbolic descriptions of 
events (tokens) extracted from an im- 
age by the CAAPP. 

The ICAP connects to another dual- 
ported memory, which it shares with the 
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SPA. Each SPA processor can access 
data stored in this memory by any ICAP 
processor. Our current plans are to use 
a commercially available multiproces- 
sor at this level to provide general-pur- 
pose computational capabilities for high- 
level processing. The SPA also has its 
own shared memory. The ACU, which 
manages the CAAPP and ICAP, is con- 
nected to that memory and communi- 
cates with the SPA processors as if it 
were just another processor of the same 
type. The full-scale IUA can thus pro- 
cess in parallel all pixels of a single 512 
x 512 image, several thousand tokens, 
and up to 64 high-level processes. Sim- 
ulations of the full-scale IUA have shown 
that it can support model-based recog- 
nition tasks at or near frame rate, which 
is considerably closer to real-time im- 
age understanding than previous sys- 
tems. Nonetheless, even greater paral- 
lelism will be required to achieve true 
machine perception. (For more infor- 
mation on the first-generation IUA, see 
Weems et al?) 

Second-generation WA. A second 
generation of the IUA, currently under 
development, reflects experience from 
the prototype construction, advances in 
machine vision research, and newer 
hardware technology. It retains the over- 
all three-level structure of the first gen- 
eration, but the CAAPP and ICAP 
levels have been significantly en- 
hanced. The new hardware implemen- 
tation will encompass 106th (16,384 
CAAPP, 64 ICAP, and 4 SPA proces- 
sors) of a full-scale second-generation 
system. The second-generation hard- 
ware will be half the physical size of the 
prototype IUA, yet will provide rough- 
ly 10 times the processing power of that 
system. 

In the CAAPP, 256 processors now 
reside in a single chip, and each of these 
16 x 16 processor arrays is associated 
with an ICAP processor. Rather than 
treat the I/O staging memory as an I/O 
device, the new CAAPP treats it as 
merely another bank of main memory. 
Greater flexibility has been added to 
the interface with the ICAP as well. 

The ICAP processors now consist of 
32-bit floating-point DSP chips, each of 
which is capable of 50 Mflops. In addi- 
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/I Created by James II. Burrill, University of Massachusetts 

# include “stream.h” 
# include “1uaClassLib.h” 

II Segment ‘intensity-image’ into regions by comparing the values of 
/I neighboring pixels. Return the pattern for the virtual Coterie switches. 

CharPlane run-corm-comp(CharP1ane &intensity-image) 
{Everywhere active; /I Ensure that every pixel participates 

BitPlane temp; 
CharPlane save-connections; 

temp = (intensity-image == intensity-image.West()) & 
-temp.WestEdge-p(); 

save-connections.InsertBits(temp, WL); 

temp = (intensity-image == intensity-image.North()) & 
-temp.NorthEdge-p(); 

save-connections.InsertBits(temp, NL); 

temp = (intensity-image == intensity-image.East()) & 
-temp.EastEdge-p(); 

save-connections.InsertBits(temp, EL); 

temp = (intensity-image == intensity-image.South()) & 
-temp.SouthEdge-p(); 

save-connections.InsertBits(temp, SL); 

return save-connections; 
1 

Figure 3. Example C++ program using the image-plane class library. 

tion to the main memory of the CAAPP, 
each ICAP processor will have access to 
1 Mbyte of local memory and 4 Mbytes 
of shared memory within a local cluster 
of four processors. Whereas the first- 
generation prototype connected the 
ICAP processors via a centrally con- 
trolled bit-serial crossbar, the 64 proces- 
sors in the second generation will be 
fully connected by high-speed direct- 
memory-access channels. The array will 
also support a global shared memory, 
composed of all the local shared memo- 
ries, with a hierarchical access mecha- 
nism. 

Unlike the minimal ACU in the pro- 
totype system, the second generation 
will have a sophisticated controller, de- 
signed to support high-level languages 
and virtual processor arrays in the 
CAAPP. We have programmed the pro- 
totype CAAPP in Forth and C, using 
high-level syntax extensions to those 
languages that still require theprogram- 
mer to have considerable knowledge of 
the machine’s organization. These lan- 
guage extensions are really a halfway 

step between assembly language and 
high-level languages. 

In contrast, the second-generation 
CAAPP will be programmed in stan- 
dard C++, using a class library that de- 
fines image-plane data types. Programs 
written with the class library can be 
compiled and executed on any machine 
with a standard C++ compiler. To 
execute such programs on the IUA 
merely requires the use of a separate 
runtime library. Figure 3 shows a sam- 
ple C++ program for the CAAPP. 

The second-generation ICAP will be 
programmed in C with libraries to sup- 
port interprocessor communication. An 
Ada compiler will also be available. A 
symbolic database system to support 
processing, grouping, and matching of 
extracted image events and model parts 
is currently under development for the 
ICAP. 

The SPA will be programmed in yet 
another dialect of C, and a parallel Com- 
mon Lisp compiler will be available as 
well. A blackboard system will be avail- 
able to support knowledge-based pro- 
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cessing at the high level. One of our 
long-term goals is to develop a single, 
unifying model and language for pro- 
gramming the IUA so that program- 
mers will not have to distinguish explic- 
itly among the three levels. 

The future. Elements of a third-gen- 
eration IUA are already under study. 
We expect it to be a transitional step 
between the current three-level organi- 
zation with a single low-level array and 
future generations that will incorporate 
multiple, heterogeneous, low-level pro- 
cessors called virtual sensors. It may 
also be possible to split the hardware 
into more than three levels and thereby 
represent finer divisions of the abstrac- 
tion space in more complex vision ap- 
plications. 

Knowledge-based machine vision is 
both complex and computationally in- 
tense. It also presents a unique set of 
opportunities for exploiting parallelism. 
The Image Understanding Architecture 
has been built to capitalize on several of 
those sources of potential parallelism. 
Because the capacity for complex par- 

allelism in vision is far beyond the capa- 
bilities of current technology, parallel 
architectures for vision will continue to 
evolve at the forefront of innovation in 
architectural research.m 
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D uring the past three decades, 
powerful new methods for im- 
age analysis have emerged, 

along with novel architectural concepts 
for the design and construction of mas- 
sively parallel machines. These devel- 
opments are often motivated by the need 
to process images at high speeds. How- 
ever, with some notable exceptions, re- 
search on architectures for image un- 
derstanding has been driven more by 
classical models of image processing 
(essentially, image-to-image transfor- 
mations and global feature extraction) 
than by the more powerful image repre- 
sentations and processing methods de- 

veloped by the image understanding 
community. 

In this article we consider two exam- 
ples from image understanding - fo- 
cus-of-attention vision and contour im- 
age analysis - and present new 
parallel-processing methods that effec- 
tively support these types of computa- 
tions. Our research is a blend of theory 
and practice. On the one hand, we aim 
to develop algorithms whose properties 
are well understood and can be formal- 
ly related to key aspects of machine 
models. On the other, we want algo- 
rithms that are easy to implement and 
practical in terms of their actual pro- 

cessing times on existing parallel ma- 
chines. Our experimental research was 
conducted on a 16,384-processor Con- 
nection Machine CM2, and we present 
results of algorithm implementations 
on that machine. 

In focus-of-attention vision, we use 
expectations about image structure to 
limit the image’s processing to regions 
expected to contain key image features. 
Focus-of-attention vision is a powerful 
control strategy for image understand- 
ing because it lets us limit processing to 
relatively small subsets of an image (es- 
pecially critical for sequential imple- 
mentations of image understanding sys- 
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terns). Perhaps more importantly, it lets 
us use specialized feature-extraction 
algorithms that are highly tuned by our 
expectations. 

How can we use massively parallel 
computers to build vision systems based 
on focus-of-attention methods? Mas- 
sively parallel computers have tens of 
thousands of processors, and focus-of- 
attention vision systems analyze rela- 
tively small image windows (typically 
containing only thousands of pixels). 
The classical approach for processing 
images on massively parallel machines 
-assigning each pixel to a processor - 
will leave most of the machine idle. It 
would be preferable to use as many of 
the processors as possible and have the 
time needed to process an image win- 
dow be a function of the number of 
pixels in that window. 

We have been studying the use of 
data replication techniques to achieve 
the goal of efficient focus-of-attention 
vision on massively parallel machines.’ 
We replicate the window to be pro- 
cessed many times and decompose ba- 
sic image analysis operations into 
components that can be computed si- 
multaneously on a SIMD machine. We 
briefly describe this research in the next 
section, “Replicated-data algorithms.” 

Contours (extended edges) are im- 
portant image structures for both match- 
ing and recognition. Many computation- 
al stereo models and motion analysis 
models are based on an analysis of the 
geometry of image contours. Addition- 
ally, most object recognition systems 
operate by initially reducing the inten- 
sity image to a set of contours and then 
matching their geometric properties 
against stored models. 

Contours are marked in images by 
processes such as edge detection and 
thresholding. Although it is possible to 
operate on the contours while they are 
embedded in the two-dimensional im- 
age, several reasons make it desirable, 
especially on richly interconnected ma- 
chines like the Connection Machine, to 
transform the image contours from their 
image-plane embedding to a linear repre- 
sentation. The two primary reasons are 

(1) The original image will ordinarily 
have far more pixels than the number of 
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processors in the massively parallel com- 
puter. However, the number of pixels 
marked as edges by an edge detector is 
ordinarily only a small percentage of 
the pixels in the image. If we can re- 
move the contour pixels from the image 
plane and store themin linear datastruc- 
tures, then we obviate the need to pro- 
cess the “empty” space in the edge im- 
age and reduce the “virtual processor 
ratio” (the ratio of the number of logi- 
cal processors needed to perform an 
operation to the number of available 
physical processors) to 1. 

(2) Richly connected machines like 
the hypercube-connected Connection 
Machine efficiently support a set of very 
powerful operations calledparallelpre- 
fix, orscan, operators. These let us com- 
pute properties of processor subsets in 
time proportional to the logarithm of 
the subset size. Because of the arbitrary 
pattern of processor addresses encoun- 
tered when traversing an image con- 
tour, prefix operations cannot be effec- 
tively applied to the contours while they 
are embedded in the image plane. Trans- 
forming the image contours to a linear 
representation allows us to use these 
prefix operations. 

In summary, processing contours in 
their image-plane embedding makes the 
processing time proportional to the size 
of the image, while operating on them 
in the compact, linearized representa- 
tion makes the time proportional to the 
logarithm of the longest contour in the 
image. This is a significant difference. 
The key is to perform the transforma- 
tion from the image to the linear repre- 
sentation efficiently. This transforma- 
tion involves, as a first important step, 
ranking the pixels in each contour. In a 
previous paper* we presented one sim- 
ple O(log N) algorithm for ranking im- 
age contours (containing N points) and 
discussed its implementation on the 
Connection Machine. In this article we 
sketch the algorithm and illustrate the 
advantages of linearizing contours by 
considering the problem of piecewise 
linear approximation of contours. 

Replicated-data algorithms. Focus-of- 
attention vision can be supported by an 
approach based on techniques of data 

replication (see Narayanan and Davis 
for more details’). Our approach in- 
volves replicating image windows many 
times on the processor array and de- 
composing a computation into subtasks 
that are solved simultaneously using the 
copies. The partial results from the cop- 
ies are combined to generate the overall 
problem solution. The technique uses 
data parallelism within each copy of the 
data structure and operation parallel- 
ism across the copies. The justification 
for this approach is that the number of 
processors is becoming a less critical 
resource in data-parallel computing us- 
ing massively parallel SIMD processor 
arrays, and its importance will continue 
to decline. To speed up processing of 
the relatively small data structures that 
arise in focus-of-attention vision on such 
machines, we need to devise techniques 
using a greater number of processors 
than there are data elements in the data 
structure, and divide the task performed 
on each data element among multiple 
processors. 

Data-parallel algorithms depend on 
efficient embedding of the data struc- 
ture onto the topology of the processor 
array machine’s interconnection net- 
work. In replicated-data algorithms, 
embedding has two dimensions: (1) 
Embedding of the individual copies must 
map proximate data elements to adja- 
cent processing elements; (2) corre- 
sponding data elements in different cop- 
ies should have an efficient inter- 
connection pattern among themselves 
for efficient computation across the cop- 
ies. The mechanisms provided by the 
machine to distribute the data to the 
different copies and to combine the par- 
tial results from the copies are also crit- 
ical in the design of a replicated-data 
algorithm. 

We illustrate our technique usingdig- 
ital image convolution as an example. 
Digital image convolution by a two- 
dimensional kernel of weights is used in 
a variety of operations in image pro- 
cessing - for example, in smoothing 
and edge detection. Digital image con- 
volution by a k x k kernel, for an odd 
number k, is defined as follows: Assume 
the indices of the kernel range from 
-1k / 21 to lk / 2].TheneachpixelP(u, 
v) of the image is mapped to a con- 
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Table 1. Comparison of the convolution algorithms on the Connection Ma- communications and arithmetic opera- 
chine. Timing of convolution is shown in seconds for random image and kernel. tions. 

Image 
Size 

64 x 64 
64 x 64 
64 x 64 
64 x 64 
64 x 64 
64 x 64 

Kernel 
Size 

3x3 
5x5 
7x7 

11 x 11 
15 x 15 
21 x 21 

VP Replicated-Data One-Copy 
Ratio Algorithm Algorithm 

4 0.014 0.005 
8 0.023 0.024 

16 0.050 0.091 
32 0.098 0.367 
64 0.212 1.363 

128 0.400 5.355 

We analyzed the replicated-data con- 
volution algorithm on different com- 
mon interconnection networks and de- 
termined the results for binary 
hypercubes, the underlying architecture 
of the CM2. The replicated-data algo- 
rithm performs better than the single- 
copy algorithm on hypercube architec- 
tures. For computing the convolution 
over a k x k neighborhood of an II x n 
image using k2 copies, the speedup is 
given by 

volved value C(u, v) as given in 

kl2 k/2 

C(u,v) = c c P(u +i,v + j)K(i,j) 

i=-k/2 j=-k/2 

where P is the image array and K the 
kernel array. 

The replicated-data algorithm to com- 
pute the convolution of an n x n image, 
where n = 2”-‘, by a k x k kernel of 
weights is given below. The algorithm 
uses k2 copies of the image. These cop- 
ies can be visualized as forming a two- 
dimensional square array whose indices 
range from - Lk / 21 to [k / 21. The ker- 
nel weights are distributed one per copy 
such that copy (i,j) gets the value K(i,j) 
for -k/2 5 i < k/2 and -kl2 2 j < k/2. 

The algorithm’s four steps are 

(1) Using a scan operation with copy 
operator, copy the image stored in copy 
0 to all copies. 

(2) Broadcast the kernel weights to 
the copies in k2 steps such that all pro- 
cessing elements (PEs) of the copy (i, j) 
get the kernel weight K(i, j). 

(3) The PE allocated to pixel (u, v) of 
copy (i, j) of the image performs the 
following computation: Obtain the pix- 
el value from PE (u + i, v + j) within the 
same copy (assume that all pixels out- 
side the image have a gray level of 0) 
and store it in P as its pixel value. Mul- 
tiply this value by the kernel weight 
allocated to the copy K(i, j) and store 
this result in C. 

(4) Perform a scan operation with 
“add” as the operator on C across the 
copies of each pixel of the image and 
store the result in a designated copy, say 
copy (0,O). The scan result gives the 
convolved image for each pixel. 

The replicated-data convolution al- 
gorithm was implemented on a 16,384- 
processor Connection Machine CM2. 
Table 1 compares the algorithm’s per- 
formance with that of a single-copy data- 
parallel algorithm. The virtual proces- 
sor capability of the Connection 
Machine, in which each physical PE sim- 
ulates multiple PEs, was used in the 
implementation, since the replicated- 
data algorithm needs many more pro- 
cessors than the physical array can sup- 
port. The number of virtual PEs each 
physical PE simulates is called the vir- 
tual processor ratio, or VP ratio (given 
in the third column of the table). The 
fourth column gives the timing of the 
replicated-data algorithm. The timing 
for the single-copy algorithm is given in 
column five when the CM2 was config- 
ured to have the same VP ratio as the 
corresponding replicated-data algo- 
rithm, thus making the comparison fair. 
The front-end computation overhead 
was negligible in both cases. On the 
whole, the replicated-data algorithm 
achieves impressive speedup over the 
single-copy version for image convolu- 
tion operations. 

Replicated-data algorithms reduce 
the computation time by exploiting 
operation parallelism, but they incur 
overhead in distributing the data to the 
copies and in combining the partial re- 
sults from them. This overhead is due to 
communications and computations 
across the copies of the data structure 
and depends on the efficiency of those 
operations when multiple copies are 
mapped onto the interconnection net- 
work. This efficiency is affected by the 
topology of the interconnection network 
and the time to perform near-neighbor 

s= 
k2 

2 log k 
2ty t, 

+ t’f 
t, i-t, -tt; t,+t,+t’t 

where t; is the time for a near-neighbor 
communication, tP is the time for a gen- 
eral hypercube communication, to is the 
time for an addition on the machine, 
and t, the time for a multiplication. 
Figure 1 compares the speedup predict- 
ed by the above equation with the speed- 
up obtained in practice on the CM2. 

There are other low-level-vision op- 
erations that benefit from the technique 
of data replication. Previously, we pre- 
sented analysis and implementation re- 
sults of the replicated histogram algo- 
rithm.’ Table lookup, Hough transform 
computations, and co-occurrence ma- 
trix computations are some of the other 
operations that can be speeded up using 
techniques similar to those used in the 
histogram algorithm. 

Image algebra is an architecture-in- 
dependent language that can describe a 
large class of image operations. Convo- 
lution belongs to the class of general- 
ized template operations defined in 
image algebra. We developed a method 
to automatically generate a replicated- 
data algorithm for any image operation 
that can be described in terms of a gen- 
eralized template operation.’ We also 
developed replicated-data algorithms for 
rank-order filters, which are local non- 
linear image operations. Rank-order fil- 
ters are expensive to compute on SIMD 
machines, as they involve independent 
sorting of the neighborhood pixels within 
each processor. Sorting can be per- 
formed quickly if the neighborhood el- 
ements are distributed among many 
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processors using the sorting algorithms 
of the underlying interconnection net- 
work. For instance, k  neighborhoodpix- 
els can be sorted in a replicated scenar- 
io on the hypercube in O(log* k) time, 
whereas independent sorting on each 
PE takes O(k2) time on SIMD architec- 
tures. By assigning different areas of 
the search space to different copies of 
the data structure, we are extending the 
replication technique to problems in 
intermediate- and high-level vision that 
contain a combinatorial component. 
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Image contour analysis. We turn now 
to problems associated with the effi- 
cient processing of image contours us- 
ing hypercube-connected massively 
parallel computers. An important ad- 
vantage of hypercube machines like the 
Connection Machine over the more com- 
mon mesh network is that one can effi- 
ciently compute parallel prefix opera- 
tions using the hypercube network. 
However, such operations can be ap- 
plied only to a sequence of processors in 
which each processor can randomly ac- 
cess information from processors dis- 
tance 2’ away from it, where i is an 
integer greater than zero. Since a con- 
tour can wind freely through an image, 
the sequence of processor addresses 
associated with the pixels on a contour 
will not generally have this property. 
Below we present an efficient algorithm 
for ranking the pixels on a contour. 
Once the pixels are ranked, the contour 
can be moved to a new set of processors 
whose addresses will form a monotonic 
continuous sequence (by simply mov- 
ing the ith contour element to processor 
i), thus allowing random access between 
processors. The algorithm we present 
runs in O(log N) time (where N is the 
length of the contour) on either an ex- 
clusive read, exclusive write (EREW) 
parallel random access machine or a 
distributed-memory machine with 
EREW ability between memory mod- 
ules. (See the literature for more de- 
tails.*) 

4.0 - 

.- 
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3 5 7 9 11 13 15 17 19 21 
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Figure 1. Comparison of experimental and theoretical speedups. 

bor. Closed curves (curves that form a address seen so far, as well as the dis- 
loop and have no endpoints) can also tance along the tour path to this maxi- 
occur in the image. Our goal is to list ma1 node. In Figure 2, node 8 would be 
rank all the curves in the image in par- the node with the maximum address. 
allel such that all open curves have one Thus, after pointer jumping has termi- 
of their endpoints marked as the head nated, all nodes in the Euler tour path 
and all other pixels on that curve deter- will have identified node 8 as having the 
mine their distance (along the curve) maximum address and will have com- 
from that endpoint. For closed curves, puted the distance along the path to 
any arbitrary pixel can be chosen as the node 8. At this point, a list ranking for 
head, as long as all pixels on the curve the open curve can be computed by 
agree on which pixel is the head and simply having each pixel compute the 
every pixel determines its distance from minimum value of the distance to node 
that head in a consistent direction (clock- 8 for the two nodes associated with that 
wise or counterclockwise). pixel. 

The algorithm starts with two point- Many details have been omitted here, 
ers, Pl and P2, pointing to neighboring such as how to initiate the Euler tour 
pixels. The algorithm uses these point- path, when to terminate the pointer- 
ers to form an Euler tour path within jumping loop, and the changes neces- 
each curve. Figure 2 illustrates this for a sary to handle closed curves; a more 
five-pixel open curve. If the Euler tour detailed discussion is available.’ 
path is followed around an open curve, The list-ranking algorithm was im- 
each pixel on the curve will be visited plemented on the Connection Machine. 
exactly twice, while the two endpoints Table 2 shows the results obtained by 
are visited only once. Let’s call each running our EREW O(log N) list-rank- 
element (pointer plus distance value to ing algorithm on the CM2 for different 
be computed) in the 
Euler tour path a node. 
The Euler tour is easilv Pixel: 1 2 3 4 5 

The problem is as follows: We are 
given an N X N binary image that con- 
tains only thin curves. Each pixel on 
each curve has exactly two neighboring 
pixels adjacent to it, with the exception 
of endpoints, which have only one neigh- 

initialized. 
After the Euler tour 

path is initialized, each 
pointer in the path re- 

Pointer 1: 

Pointer 2: 

peatedly does-pointer List ranking: 4 3 2 1 0 
jumping (distance dou- 
bling) while remember- Figure 2. Example of Euler tour path on an open 
ing the maximum node curve with five pixels. 
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Table 2. Result of CRCW and EREW O(log IV) time algorithm versus O(N) time algorithm (virtual processor ratio = 8). 

Curve CRCW Algorithm 
Length Iterations Time (ms) 

EREW Algorithm 
Iterations Time (ms) 

O(N) Time Algorithm 
Iterations Time (ms) 

64 5 193 8 236 64 605 
128 5 201 9 283 128 1,219 
256 6 244 10 334 256 2,438 
512 6 262 11 387 512 4,859 

1,024 I 334 12 476 1,024 9,696 
2,048 8 487 13 726 2,048 19,410 
4,096 8 715 14 1,162 4,096 38,827 

longest curve lengths. An image can 
contain many curves, and the algorithm 
will rank them all simultaneously. How- 
ever, the time needed to rank the entire 
set of image curves is determined by the 
length of the longest curve in the image. 
As a comparison, the running times re- 
quired by the concurrent read, concur- 
rent write (CRCW) algorithm, present- 
ed elsewhere,? are also shown, as are 
times for a trivial linear-time algorithm 
that propagates the list-ranking infor- 
mation along each curve pixel by pixel. 
We can see that the EREW algorithm is 
slower than the CRCW algorithm, but 
both are much faster than the linear- 
time algorithm. The algorithms were 
applied to a 512 x 512 image using 8,192 
physical processors; thus, the VP ratio 
was 8 for all these experiments. 

Next, we use piecewise linear approx- 
imation of curves as an example to illus- 
trate how contours can be processed 
efficiently once they are linearized. Peu- 
cker devised a method for finding piece- 
wise linear approximations of curves by 
breaking curves at points that are far- 
thest from the line that connects the two 
endpoints of the curve. By repeatedly 
applying this curve-breaking method 
until all pixels of each curve are within 
a threshold distance from the line con- 
necting the endpoints, we can obtain a 

good piecewise linear approximation. 
This algorithm can be implemented 

easily on our monotone contiguous 
mapping between pixels and processors. 
The algorithm involves the following 
steps: 

(1) Perform a reverse first scan on 
the x and y coordinates, so that the first 
processor of each curve segment has the 
X, y coordinates of the two endpoints of 
the segment. 

(2) The first processor of each curve 
calculates the coefficients of the line 
that passes through its endpoints. 

(3) A forward first scan is performed 
to broadcast the coefficients of this line 
to all pixels in this curve. 

(4) All pixels calculate, in parallel, 
the distance between themselves and 
the line joining the endpoints. 

(5) A reverse max scan is performed 
on this distance concatenated with the 
processor ID number of each pixel. This 
results in the first processor in each 
segment’s knowing the processor ID 
number of the largest address processor 
having maximal distance from the line. 
Let m, be the address of the processor 
having maximal distance in curve seg- 
ment i. 

(6) If this maximum distance is small- 
er than a threshold, the segment de- 

Table 3. Result of applying the algorithm. 

Total 
Processors Pixels 

Splitting Algorithm 
Cd Iterations Time (ms) 

8,192 7,706 581 800 5 36 
8,192 6,735 515 700 5 37 
8,192 7,943 630 877 6 46 
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selects itself and is idle through steps 7 
and 8. If all segments in the image de- 
select, the algorithm terminates. 

(7) A forward first scan is used to 
broadcast m, to all processors in curve 
segment i. 

(8) Processor m, sets its segment flag 
to “True,” thus splitting curve segment 
i for the next iteration. 

(9) Steps 1 through 8 are repeated 
until the algorithm finally terminates at 
step 6. 

We applied this piecewise linear ap- 
proximation algorithm to three differ- 
ent 512 x 512 test images using the scan 
instructions available on the CM2. Ta- 
ble 3 shows the results. Edge detection 
and the list-ranking algorithm were ap- 
plied to the three images, and the re- 
maining pixels were packed into mono- 
tone contiguous processors. At this point 
each image contained C,,,,, contours, 
and after applying the algorithm, each 
contained Crnd linear segments. We can 
see that typical images will require five 
to six iterations of the algorithm before 
termination. On the CM2, each itera- 
tion takes roughly 7 milliseconds. 

We are working to develop practical 
curve-matching algorithms, as well as 
stereo-matching algorithms. We have 
also worked on an efficient parallel al- 
gorithm for computing the visibility 
graph of a polygon by using only paral- 
lel prefix operations for communica- 
tion (closed curves can be transformed 
into polygons by the piecewise linear 
approximation algorithm). 

The research discussed here focuses 
on the effective use of massively paral- 
lel computation for representative prob- 
lems in intermediate-level vision. One 



of the greatest challenges facing the 
image understanding community is to 
discover how to use parallelism to ad- 
dress problems in high-level vision - 
that is, image interpretation and scene 
analysis. While image understanding 
itself is the least developed aspect of the 
field, we can see several architectural 
solutions emerging in the current de- 
cade. These include the use of hetero- 
geneous but tightly coupled systems like 
the Image Understanding Architecture, 
which attempts to capture one of the 
basic image understanding paradigms 
of the 1980s and the use of homoge- 
neous massively parallel systems, which 
use a single computational paradigm 
(for example, neural computing, con- 
nectionism, constrained combinatorial 
analysis) to address high-level-vision 
problems. These and alternative vision 

architectures deserve the attention of 
vision researchers in the 1990s.B 
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e are developing a soft- problem domain can make the high- The software environment consists of 
ware environment tailored performance algorithms and the sophis- three principal components - DISC, 
to computer vision and im- ticated algorithm techniques being de- Cloner, and Graph Matcher-shown in 

age processing (CVIP). Although ob- signed by algorithms experts more Figure 1. At the heart of the environ- 
taining highest performance on parallel readily available to CVIP researchers. ment, and key to the operation of all 
systems will almost certainly 
require sophisticated knowl- 
edge of parallel processing 
(for example, see Stout’), it is 
both unrealistic and undesir- 
able to expect a researcher in 
the CVIP area to be an expert 
in parallel problem-solving 
techniques or parallel archi- 
tectures. It is essential to pro- 
vide tools that let applications 
researchers achieve reason- 
ably high performance at a 
reasonable level of program- 
ming effort. The software en- 
vironment focuses on how in- 
formation about the CVIP 

i 

I Cloner 
Developing 

new algorithms I 

I 
Figure 1. Overview of the software environment for 
computer vision and image processing. 

three components, is a set of 
algorithm libraries, along with 
a metalevel of algorithm char- 
acteristics that abstract infor- 
mation about the library pro- 
grams. The environment also 
includes traditional compilers, 
debuggers, and operating sys- 
tems components. However, 
our goal is to exploit the spe- 
cial characteristics of CVIP to 
achieve easier algorithm de- 
velopment and better perfor- 
mance than can be expected 
with general-purpose tools; 
therefore, we focus on the sub- 
systems in Figure 1. Each com- 
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ponent addresses a different aspect of 
the problem of rapid prototyping for 
CVIP algorithms and tasks: 

l DISC (dynamic intelligent schedul- 
ing and control) supports experimenta- 
tion at the CVIP task level by creating a 
dynamic schedule from a user’s specifi- 
cation of the algorithms that constitute 
a complex task. 

l Cloner is aimed at the algorithm 
development process and is an interac- 
tive system that helps a user design new 
parallel algorithms by building on and 
modifying existing library algorithms. 

l Graph Matcher performs the criti- 
cal step of mapping new algorithms onto 
the target parallel architecture. 

We have completed initial implementa- 
tions of DISC* and Graph Matcher’; 
work on Cloner is in progress. The re- 
mainder of this article summarizes the 
components of the CVIP software envi- 
ronment. 

DISC: A dynamic scheduler for exe- 
cutingcomputer vision tasks. The DISC 
system is designed to facilitate system 
prototyping, the experimental process 
during which a user tests strategies for 
performing a complex task by trying 
different component algorithms, differ- 
ent orderings of algorithms, and differ- 
ent strategies for controlling the selec- 
tion and sequencing of algorithms. DISC 
is implemented as an expert system that 
uses a library of low-, mid-, and high- 
level-vision algorithms and alternative 
parallel implementations, a database of 
execution characteristics of CVIP algo- 
rithms, rule-based heuristics, and the 
current system state to produce and con- 
tinually update a schedule for the sub- 
tasks (algorithms) that constitute the 
overall task. The scheduler keeps track 
of what subtasks are potentially execut- 
able and chooses the best candidate by 
considering the relative importance of 
finishing the subtask quickly and the 
extent to which the current allocation 
of data in the machine partitions (sub- 
sets of processing elements) matches 
the data allocation needed by the sub- 
task. DISC also controls repartitioning 
and compaction of the system. 

Figure 2 is a graph representing data 
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dependencies among the algorithms con- 
stituting a sample task. The primitives 
of the DISC language are the library 
algorithms. The graph is derived from a 
sequential listing of the algorithms and 
their arguments. The data dependen- 
cies are derived from the input/output 
specifications for the parameters for each 
algorithm. Once a subtask is chosen for 
execution, the scheduler selects the most 
suitable implementation of that subtask 
from the library. Implementations may 
differ by 

l the way data is allocated to process- 
ing elements (for example, pixel data 
allocated by rows versus by square 
subimages, and contours allocated 
by object versus by coordinates); 

l the format of the input and output 

Algorithm 
characteristics 

The ability to characterize algo- 
rithms is key to the DISC and Clon- 
er systems. The characteristics 
used are derived from the following 
general set of parallel-algorithm 
characteristics: 

l Nature of parallelism: data or 
function. 

l Data granularity or module 
granularity: the size of the data 
items processed as a unit or the 
size of independent modules. 

l Degree of parallelism. 
l Uniformity of operations, ex- 

pressed as the smallest data granu- 
larity at which uniform operations 
are performed. 

l Synchronization requirements 
and precedence constraints. 

l Static/dynamic character of the 
algorithm, in terms of the pattern of 
process generation and termination. 

l Data dependencies and related 
issues of data allocation and mem- 
ory access patterns. 

l Five characteristics shared by 
serial and parallel algorithms: fun- 
damental operations, data types 
and precision, memory require- 
ments, data structures, and I/O. 

parameters (for example, binaryim- 
age versus edge list); 

l mode (single instruction, multiple 
data, or SIMD; or multiple instruc- 
tion, multiple data, or MIMD); and 

l range of number of processors us- 
able by the implementation. 

DISC selects an implementation based 
on how well its characteristics coincide 
with the current data allocation, data 
format, and mode of the chosen system 
partition, and based on the expected 
relative speedup for the size of the par- 
tition. The scheduling is performed dy- 
namically to handle situations common 
in vision applications: algorithms for 
which the execution time depends on 
the input image (for example, boundary 
tracing) and tasks in which the actual 
sequence of algorithms executed may 
vary depending on characteristics of the 
image (for example, the Edge linking/ 
Edge continuity test loop in Figure 2). 

DISC has been implemented with the 
PASM (partitionable SIMD/MIMD) 
parallel-processing system as its target 
architecture. Evaluation to date has 
consisted of simulations of tasks cover- 
ing a spectrum of dependency graphs. 
In these tests, each library algorithm 
was represented by at least 12 imple- 
mentations - typically two or three 
different implementation strategies ex- 
ecutable on six different partition sizes. 
For algorithms with image-dependent 
execution times, the simulated times 
were randomized by the simulation con- 
troller, and at least 100 runs were per- 
formed. 

Performance was evaluated using 
measures including utilization and sched- 
uling overhead. Utilization is measured 
as the percentage of the processor-time 
space during which processors are not 
idle. Figure 3 shows a processor-time 
diagram for the task in Figure 2. Over 
the nontrivial tasks on which DISC has 
been tested, a 77-percent average utili- 
zation was achieved, and on the tasks in 
the test suite for which the optimal sched- 
ule was known, DISC obtained the op- 
timal schedule. 

Scheduling overhead is used to assess 
the amount of overhead DISC incurs in 
creating a schedule. The scheduling over- 
head is counted as the number of rules 
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Figure 2. Algorithm data-dependency graph for a CVIP task Figure 3. Example processor-time diagram for the task in 
to locate tanks in forward-looking infrared radar images. Figure 2. (Time axis is not to scale.) 

fired to begin the execution of an imple- 
mentation of each algorithm. Using re- 
alistic assumptions to relate simulation 
time units and real time, scheduling 
overhead was measured to be less 
than 0.1 percent of the overall execu- 
tion time. 

Current work on DISC includes ex- 
pansion of the library, refinement of the 
scheduling heuristics, performance anal- 
ysis based on stochastic modeling of 
image-dependent execution character- 
istics, and packaging as a tool portable 
to a variety of parallel architectures. 

Cloner: An interactive environment 
for developing parallel algorithms. Clon- 
er is a software reuse tool that helps a 
user design parallel algorithms by build- 
ing on and modifying existing library 
algorithms. It takes advantage of the 
fact that CVIP algorithms, especially 
for low-level vision, are often highly 
structured and that many image- and 
graph-based algorithms share the same, 
or a similar, structure. Cloner’s dual 
goals are rapid prototyping and im- 
proved code quality. 

The library forms the heart of Cloner. 
The user is provided with information 
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about what algorithms and programs 
the system “knows about” and is guided 
through the process of developing a new 
program by relating it to existing pro- 
grams. This may be done by a combina- 
tion of operations, including the adop- 
tion and/or modification of library data 
abstractions (objects), the composition 
of library code segments, and the 
modification of library code templates. 
Emphasis is on providing a character- 
ization of the library algorithms and 
kernels to act as an interface between 
the library and the user. Cloner exploits 
reusable code at several levels: 

l the data-structure/data-abstraction 
level, 

l the control structure level, and 
l the algorithm level. 

Interaction is via menus and queries 
that lead the user through an adaptive 
series of displays and questions designed 
to let either the user or Cloner select 
code templates. The questions are based 
on characteristics of the algorithm in 
terms of attributes such as data versus 
function parallelism and dominant data 
structures. Graphical displays show data- 

dependency patterns associated with a 
library program or kernel (for example, 
an operation structured around a 3-by- 
3.pixel window) and highlight potential 
reusable code fragments (for example, 
an optimized looping structure displayed 
to delimit the control structure and the 
replaceable loop body). 

We are now building &loner, an X 
window-based implementation of Clon- 
er. Figure 4 on the next page shows an 
example of the main Xcloner menu for 
image-processing operations. The cate- 
gories in the main menu bar identify the 
major operations provided by Xcloner. 
Each category provides a pull-down 
menu. At the highest level, Xcloner is 
machine independent. Information spe- 
cific to the target parallel system resides 
within the menu options and in the cod- 
ing and mapping of the library algo- 
rithms. The initial implementation fo- 
cuses on image processing and 
low-level-vision algorithms because the 
obvious common structures for these 
algorithms facilitate the development 
of the user interface and library access 
tools. However, many algorithms per- 
formed in mid- and high-level vision use 
well-defined structures such as graphs 



Figure 4. Example of Cloner display for image-processing algorithms. 
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Figure 5. Dependency graph (a) and hypergraph (b) for a histogramming algo- 
rithm. N = number of pixels. Hypernode labels show the number of DG nodes 
combined to form the hypernode. Hyperedge labels characterize the pattern of 
the edges merged to form the hyperedge: D = Distribute (one to many); P = 
Parallel (one to one). 

to represent regions and objects. Fu- directly (for example, by a data-depen- 
ture work includes expansion of Cloner dency graph or dataflow graph, or as a 
to include these algorithms. program that is transformed to such a 

graph), then the critical step in mapping 
Graph Matcher: Mapping CVIP al- the algorithm onto the parallel archi- 

gorithms onto parallel architectures. If tecture involves the assignment of algo- 
a user has specified a new algorithm rithm steps to processors. The objective 
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is to equalize the work done by the 
processors and to minimize overhead 
from interprocessor communication. 
General-purpose compilers and map- 
ping tools are designed to perform this 
function. However. in many algorithms 
with regular structure, it is possible to 
exploit prior experience to obtain map- 
pings that might be difficult or prohibi- 
tively time-consuming to derive using 
general-purpose tools. 

Graph Matcher uses pattern-match- 
ing techniques to recognize the data- 
dependency structure of a new algo- 
rithm as an instance of a dependency 
structure for which an algorithm-to-ar- 
chitecture mapping is already known. 
At the data-dependency level, especial- 
ly in low-level vision and image pro- 
cessing, many algorithms share commu- 
nications patterns: 

l patterns typical for window-based 
algorithms, 

l patterns typical for block-based al- 
gorithms. 

l patterns characteristic of transforms, 
and 

l patterns typical for collecting image 
statistics. 

At the process level, algorithms based 
on the same paradigm (for example, 
divide and conquer) may exhibit similar 
communications requirements. 

Graph Matcher consists of a library 
of known data-dependency structures 
and mappings of these structures onto 
architecture configurations. The input 
to Graph Matcher is a directed acyclic 
graph representing a new algorithm. The 
process of matching the input depen- 
dency graph (DG) to one of the library 
graphs can be formulated as a graph 
isomorphism problem; however, the 
complexity of graph isomorphism makes 
direct and exhaustive comparison to the 
library infeasible. Graph Matcher there- 
fore relies on heuristics that use easy- 
to-compute graph attributes and that 
take advantage of the regular structure 
of many image-processing algorithms. 

In a candidate elimination step, easi- 
ly measured features of the input DG 
are compared to features of the library 
DGs to eliminate library graphs from 
further consideration. Features include 



Table 1. Comparison of dependency-graph sizes and hypergraph sizes. 

No. of No. of No. of No. of 
Algorithm Parameters Nodes Edges Hypernodes Hyperedges 

Histogram No. of pixels: N 3+2N 3N +l 5 4 

Hough No. of pixels: N 2N+P+2 NP+NiP+I 5 4 
transform No. of parameters: P 

Threshold No. of pixels: N 3Nil 3N 4 3 

Smoothing s-connected 11 10 3 2 

Erosion 
and dilation S-connected 10 9 3 2 

graph size, simple connectivity proper- 
ties, and properties of particular verti- 
ces. Isomorphism testing against the 
remaining library graphs uses an ap- 
proach based on hypergraphs. Attrib- 
uted hypergraphs have been used for 
three-dimensional object recognition. 
For the mapping problem, they are used 
to reduce the size of regular DGs by 
letting a single hypergraph node (a hy- 
pernode) represent a set of nodes and 
letting hyperedges represent connec- 
tivity between hypernodes. 

Figure 5 shows the data-dependency 
graph and hypergraph for a histogram- 
ming algorithm. Table 1 compares the 
DG sizes and hypergraph sizes for a 
number of algorithms. The use of hy- 
pergraphs does not alter the asymptotic 
time complexity of graph isomorphism. 
However, it can yield graphs of such 
reduced size that the test for isomor- 
phism becomes feasible. For graphs with 
little or no regular structure, the hyper- 
graph approach may yield no reduction 
in graph size, and therefore no savings 
in the isomorphism testing. However, 
for graphs with regular structure, sub- 
stantial savings are realized. 

We have proven that the heuristic 
procedure for generating hypergraphs 
from DGs preserves isomorphism. Un- 
der conservative assumptions, the algo- 
rithm has worst-case time complexity 
O(n4), where n is the number of nodes in 
the original DG. Under realistic assump- 
tions the complexity is O(n*). 

Graph Matcher has been implement- 
ed and tested on the Purdue Image Pro- 
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cessing Library. Areas of future work 
on Graph Matcher include incorpora- 
tion of techniques to calibrate “close- 
ness” of matches between library and 
input DGs, and the use of these mea- 
sures to apply Graph Matcher to high- 
level-vision algorithms where graph sim- 
ilarity is a more appropriate criterion 
than graph isomorphism. 

Conclusions. Anecdotal reports 
abound about researchers with scientif- 
ic and engineering problems who have 
tried to make use of parallel-processing 
systems, and who have been almost fa- 
tally frustrated in the attempt. Our ex- 
perience with parallel-algorithm design 
suggests that the regular structure of 
many CVIP algorithms can form the 
basis for an effective specialized paral- 
lel-programming environment. Our goal 
is to exploit the special characteristics 
of CVIP to achieve easier algorithm 
development and better performance 
than can be expected with general-pur- 
pose tools. DISC and Graph Matcher 
and the in-progress Cloner are “proof- 
of-concept” implementations demon- 
strating the effectiveness of this special- 
ized environmentm 
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