
The three overviews that follow are short reports of
ongoing research in image understanding architecture,

SIMD parallelism in computer vision, and software
environments for parallel computer vision.

Image Understanding Architecture:
Exploiting Potential Parallelism in Machine Vision

Charles C. Weems, Edward M. Riseman, and Allen R. Hanson
University of Massachusetts, Amhurst. MA 01003

P

arallel processing is now gen-
erally accepted as necessary to
support real-time image under-

standing applications. Much debate re-
mains, however, about what form of
parallelism to employ. Part of this de-
bate stems from the tremendous amount
and variety of potential parallelism in
machine vision.

The sensory data alone is a good ex-
ample: a medium-resolution image (512
x 512 pixels) consists of roughly a quar-
ter of a million data values. In many
cases, each of these values might be
processed in parallel. Further, if images
are obtained from a video camera, the
steady stream of data lends itself to
pipelined parallelism. Some data in-
volves multiple sensors (for example,
stereo or nonvisual spectral bands), thus
providing yet another potential source
of parallelism. Nor is it unusual to ex-
tract many different features from a
given image or set of images (for exam-
ple, lines, regions, texture patches, depth
maps, and motion parameters), and these
processes may also be carried out in
parallel.

Beyond the sensory data, image un-
derstanding involves knowledge-based
processing; and between these two lev-
els of abstraction, symbolic processing
has proved useful. Thus, vision research-
ers tend to classify algorithms and rep-
resentations into three levels: low (sen-
sory), intermediate (symbolic), and high
(knowledge-based).

Of course, the existence of multiple

February 1992

levels of abstraction is yet another source
of potential parallelism. Moreover, pro-
cessing within each level presents many
possibilities for exploiting parallelism.
Part of the allure of developing a vision
machine. from a computer architect’s
perspective, is this tremendous quanti-
ty. diversity, and complexity of latent
parallelism. By comparison, most scien-
tific and engineering applications have
simple organizations with straightfor-
ward requirements for parallelism. (For
more detailed analysis of the potential
for parallelism in image understanding,
see Weems.‘)

Image Understanding Architecture.
Over the past five years, the University
of Massachusetts and Hughes Research
Laboratories have worked together to
develop a hardware architecture that
addresses at least part of the potential
parallelism in each of the three levels of
vision abstraction. A 1/64th-scale proof-
of-concept prototype of this machine
has been built and is shown in Figure 1.
The machine, called the Image Under-
standing Architecture (IUA), consists
of three different, tightly coupled paral-
lel processors: the content addressable
array parallel processor (CAAPP) at
the low level. the intermediate commu-
nication associative processor (ICAP)
at the intermediate level, and the sym-
bolicprocessing array (SPA) at the high
level. Figure 2 shows an overview of the
architecture. The CAAPP and ICAP
levels are controlled by an array control

unit (ACU) that takes its directions from
the SPA level.

The SPA is a multiple-instruction
multiple-data (MIMD) parallel proces-
sor. while the intermediate and low lev-
els operate in multiple modes. The
CAAPP operates in single-instruction
multiple-data (SIMD) associative or
multiassociative mode, and the ICAP
operates in single-program multiple-data
(SPMD) or MIMD mode. In multiasso-
ciative mode, CAAPP cells execute the
same instruction stream but in disjoint
groups. with each group capable of op-
erating on locally broadcast values and

Figure 1. First-generation prototype of
the Image Understanding Architecture.

65

l Controls CAAPP and ICAP.
l Takes commands from SPA.
l Receives global summary

information.

l Knowledge base, blackboard.

l 64 RISC processors (MIMD).
l Instantiation of schema strategies.
l Construction of scene interpretation.

l Top-down MIMD control of grouping.

l 64 x 64 (4K) array of 16-bit

l &%%~D operation.
l Executes grouping processes.

l Stores extracted image events.

l 512 x 512 (256K) array of l-bit

ii
recessing elements.

l IMD associative/multiassociative.
l Processes sensory data.

l Stores 15 seconds of imagery

Figure 2. Overview of first-generation Image Understanding Architecture.

locally computing its own summary val-
ues in parallel with all other groups. In
SPMD mode, the ICAP processors exe-
cute the same program but have their
own instruction pointers so that they
can branch independently.

How does the IUA address the vari-
ous forms of potential parallelism de-
scribed in our introduction? We will
answer this question by considering the
capabilities of each level in Figure 2.
The I/O staging memory permits one or
more sensors to input images into a
buffer that can hold up to 15 seconds of
imagery at 30 frames per second and a
resolution equal to the size of the low-
level processor array. The resolution of
the images can differ from the array
size, with a resulting increase or de-
crease in the number of frames that can
be buffered.

The CAAPP consists of bit-serial pro-
cessors, each with an arithmetic logic
unit, registers, 320 bits of explicitly man-
aged on-chip cache memory, and 32 Kbits
of backing store (main) memory. Be-
cause it is a SIMD processor, its instruc-

66

tions are broadcast from the ACU.
However, each processor also contains
a one-bit register that controls whether
it will respond to a particular instruc-
tion.

The processors are connected via a
reconfigurable mesh, called the coterie
network. Each processor controls four
switches that configure the mesh con-
nections to its four nearest neighbors
(north, south, east, west) and four switch-
es that permit signals to bypass the pro-
cessor (northeast, northwest, horizon-
tal, and vertical). When the switches are
set, connected processors form a cote-
rie. The mesh may simultaneously con-
tain many nonoverlapping coteries.

Within a coterie, one processor may
be selected to broadcast a value to the
members of the coterie, or any subset of
the processors may send a value bit-
serially over the network. In the latter
case, the processors receive the logical
OR of the bits that were transmitted -
that is, if some of the processors trans-
mit a 1, then all processors receive a 1;
but if none of the processors transmits a

1, then all processors receive 0. This
some/none test is a valuable summary
mechanism that can be used in many
ways. For example, it can be used to
determine the maximum of a set of val-
ues contained in a coterie.

If the array has been split into cote-
ries corresponding to regions in an im-
age, then we can use the maximum-
value operation to label connected
components. Each processor is merely
given a unique value (its address) and
then the maximum-value operation de-
termines the maximum address within
each coterie. The value is then broad-
cast to the members of the coterie as
their component label. Note that all of
this takes place in every coterie simulta-
neously, even though there is only a
single instruction stream. In the CAAPP,
connected-components labeling thus
takes only about 50 microseconds. Many
other operations on image regions and
edges can be performed quickly when
the network is arranged to match their
shape. The ability to simultaneously
perform queries and summarize results
in independent groups of processors
under a single instruction stream result-
ed in the term multiassociative for this
mode of parallelism.

The main memory for the CAAPP is
also directly accessible to the ICAP
through a second port. Each ICAP pro-
cessor has access to the 8 x 8 tile of
CAAPP processors below it, providing
a highly parallel data path between the
two levels. Each ICAP processor is a 16-
bit digital signal processor (DSP) with
128 Kbytes of program memory and 128
Kbytes of data memory. We selected a
DSP because it provides a set of opera-
tions (such as single-cycle square and
add) that are well suited to computa-
tions in spatial geometry. The DSP is
also designed for use with a min imum
amount of external logic, and it pro-
vides a set of communication channels
that are used for interprocessor com-
munication. As an example of its capa-
bilities, the intermediate level can si-
multaneously match several thousand
models against symbolic descriptions of
events (tokens) extracted from an im-
age by the CAAPP.

The ICAP connects to another dual-
ported memory, which it shares with the

COMPUTER

SPA. Each SPA processor can access
data stored in this memory by any ICAP
processor. Our current plans are to use
a commercially available multiproces-
sor at this level to provide general-pur-
pose computational capabilities for high-
level processing. The SPA also has its
own shared memory. The ACU, which
manages the CAAPP and ICAP, is con-
nected to that memory and communi-
cates with the SPA processors as if it
were just another processor of the same
type. The full-scale IUA can thus pro-
cess in parallel all pixels of a single 512
x 512 image, several thousand tokens,
and up to 64 high-level processes. Sim-
ulations of the full-scale IUA have shown
that it can support model-based recog-
nition tasks at or near frame rate, which
is considerably closer to real-time im-
age understanding than previous sys-
tems. Nonetheless, even greater paral-
lelism will be required to achieve true
machine perception. (For more infor-
mation on the first-generation IUA, see
Weems et al?)

Second-generation WA. A second
generation of the IUA, currently under
development, reflects experience from
the prototype construction, advances in
machine vision research, and newer
hardware technology. It retains the over-
all three-level structure of the first gen-
eration, but the CAAPP and ICAP
levels have been significantly en-
hanced. The new hardware implemen-
tation will encompass 106th (16,384
CAAPP, 64 ICAP, and 4 SPA proces-
sors) of a full-scale second-generation
system. The second-generation hard-
ware will be half the physical size of the
prototype IUA, yet will provide rough-
ly 10 times the processing power of that
system.

In the CAAPP, 256 processors now
reside in a single chip, and each of these
16 x 16 processor arrays is associated
with an ICAP processor. Rather than
treat the I/O staging memory as an I/O
device, the new CAAPP treats it as
merely another bank of main memory.
Greater flexibility has been added to
the interface with the ICAP as well.

The ICAP processors now consist of
32-bit floating-point DSP chips, each of
which is capable of 50 Mflops. In addi-

February 1992

/I Created by James II. Burrill, University of Massachusetts

include “stream.h”
include “1uaClassLib.h”

II Segment ‘intensity-image’ into regions by comparing the values of
/I neighboring pixels. Return the pattern for the virtual Coterie switches.

CharPlane run-corm-comp(CharP1ane &intensity-image)
{Everywhere active; /I Ensure that every pixel participates

BitPlane temp;
CharPlane save-connections;

temp = (intensity-image == intensity-image.West()) &
-temp.WestEdge-p();

save-connections.InsertBits(temp, WL);

temp = (intensity-image == intensity-image.North()) &
-temp.NorthEdge-p();

save-connections.InsertBits(temp, NL);

temp = (intensity-image == intensity-image.East()) &
-temp.EastEdge-p();

save-connections.InsertBits(temp, EL);

temp = (intensity-image == intensity-image.South()) &
-temp.SouthEdge-p();

save-connections.InsertBits(temp, SL);

return save-connections;
1

Figure 3. Example C++ program using the image-plane class library.

tion to the main memory of the CAAPP,
each ICAP processor will have access to
1 Mbyte of local memory and 4 Mbytes
of shared memory within a local cluster
of four processors. Whereas the first-
generation prototype connected the
ICAP processors via a centrally con-
trolled bit-serial crossbar, the 64 proces-
sors in the second generation will be
fully connected by high-speed direct-
memory-access channels. The array will
also support a global shared memory,
composed of all the local shared memo-
ries, with a hierarchical access mecha-
nism.

Unlike the minimal ACU in the pro-
totype system, the second generation
will have a sophisticated controller, de-
signed to support high-level languages
and virtual processor arrays in the
CAAPP. We have programmed the pro-
totype CAAPP in Forth and C, using
high-level syntax extensions to those
languages that still require theprogram-
mer to have considerable knowledge of
the machine’s organization. These lan-
guage extensions are really a halfway

step between assembly language and
high-level languages.

In contrast, the second-generation
CAAPP will be programmed in stan-
dard C++, using a class library that de-
fines image-plane data types. Programs
written with the class library can be
compiled and executed on any machine
with a standard C++ compiler. To
execute such programs on the IUA
merely requires the use of a separate
runtime library. Figure 3 shows a sam-
ple C++ program for the CAAPP.

The second-generation ICAP will be
programmed in C with libraries to sup-
port interprocessor communication. An
Ada compiler will also be available. A
symbolic database system to support
processing, grouping, and matching of
extracted image events and model parts
is currently under development for the
ICAP.

The SPA will be programmed in yet
another dialect of C, and a parallel Com-
mon Lisp compiler will be available as
well. A blackboard system will be avail-
able to support knowledge-based pro-

67

cessing at the high level. One of our
long-term goals is to develop a single,
unifying model and language for pro-
gramming the IUA so that program-
mers will not have to distinguish explic-
itly among the three levels.

The future. Elements of a third-gen-
eration IUA are already under study.
We expect it to be a transitional step
between the current three-level organi-
zation with a single low-level array and
future generations that will incorporate
multiple, heterogeneous, low-level pro-
cessors called virtual sensors. It may
also be possible to split the hardware
into more than three levels and thereby
represent finer divisions of the abstrac-
tion space in more complex vision ap-
plications.

Knowledge-based machine vision is
both complex and computationally in-
tense. It also presents a unique set of
opportunities for exploiting parallelism.
The Image Understanding Architecture
has been built to capitalize on several of
those sources of potential parallelism.
Because the capacity for complex par-

allelism in vision is far beyond the capa-
bilities of current technology, parallel
architectures for vision will continue to
evolve at the forefront of innovation in
architectural research.m

Acknowledgments
This work was funded in part by the De-

fense Advanced Research Projects Agency
under contract number DAAL02-91-K-0047,
monitored bv the US Army Harry Diamond
Laboratory; contract numbers DACA76-86-
C-001.5 and DACA76-89-C-0016, monitored
by the US Army Engineer Topographic Lab-
oratory; and contract number F49620-86-C
0041, monitored by the Air Force Office of
Scientific Research. Funding was also re-
ceived under a Coordinated Experimental
Research grant, DCA 8500322, from the
National Science Foundation. We thank
David B. Shu and .I. Gregory Nash at Hughes
Research Laboratories for their contribu-
tions to the IUA design and development.

References
1. C.C. Weems, “The ArchitecturalRequire-

ments of Image Understanding with Re-

spect toParallelProcessing,“Proc. IEEE,
Vol. 79, No. 4, Apr. 1991, pp. 531-547.

2. C.C. Weems et al., “The Image Under-
standing Architecture,” Int’l J. Comput-
er Vision, Vol. 2, No. 1. Jan. 1989, pp.
251-282.

Charles C. Weems is a research assistant
professor and director of the Parallel Image
UnderstandingArchitecturesresearchgroup
at the University of Massachusetts at Am-
herst. His research interests include parallel
architectures to support low-, intermediate-,
and high-level of computer vision; bench-
marks for vision; parallel programming lan-
guages; and parallel vision algorithms.

Edward M. Riseman is a professor in the
Computer and Information Science Depart-
ment and codirector of the Laboratory for
Computer Vision Research at the University
of Massachusetts. His research interests in-
clude computer vision, artificial intelligence,
learning, and pattern recognition.

Allen R. Hanson is a professor in the Com-
puter and Information Science Department
and codirector of the Computer Vision Lab-
oratory at the University of Massachusetts.
His research interests are artificial intelli-
gence, computer vision and image under-
standing, and pattern recognition.

Effective Use of SIMD Parallelism in Low- and
Intermediate-Level Vision

P.J. Narayanan, Ling Tony Chen, and Larry S. Davis
Computer Vision Laboratory, Center for Automation Research
University of Maryland, College Park, MD 20742-3411

D uring the past three decades,
powerful new methods for im-
age analysis have emerged,

along with novel architectural concepts
for the design and construction of mas-
sively parallel machines. These devel-
opments are often motivated by the need
to process images at high speeds. How-
ever, with some notable exceptions, re-
search on architectures for image un-
derstanding has been driven more by
classical models of image processing
(essentially, image-to-image transfor-
mations and global feature extraction)
than by the more powerful image repre-
sentations and processing methods de-

veloped by the image understanding
community.

In this article we consider two exam-
ples from image understanding - fo-
cus-of-attention vision and contour im-
age analysis - and present new
parallel-processing methods that effec-
tively support these types of computa-
tions. Our research is a blend of theory
and practice. On the one hand, we aim
to develop algorithms whose properties
are well understood and can be formal-
ly related to key aspects of machine
models. On the other, we want algo-
rithms that are easy to implement and
practical in terms of their actual pro-

cessing times on existing parallel ma-
chines. Our experimental research was
conducted on a 16,384-processor Con-
nection Machine CM2, and we present
results of algorithm implementations
on that machine.

In focus-of-attention vision, we use
expectations about image structure to
limit the image’s processing to regions
expected to contain key image features.
Focus-of-attention vision is a powerful
control strategy for image understand-
ing because it lets us limit processing to
relatively small subsets of an image (es-
pecially critical for sequential imple-
mentations of image understanding sys-

68 COMPUTER

terns). Perhaps more importantly, it lets
us use specialized feature-extraction
algorithms that are highly tuned by our
expectations.

How can we use massively parallel
computers to build vision systems based
on focus-of-attention methods? Mas-
sively parallel computers have tens of
thousands of processors, and focus-of-
attention vision systems analyze rela-
tively small image windows (typically
containing only thousands of pixels).
The classical approach for processing
images on massively parallel machines
-assigning each pixel to a processor -
will leave most of the machine idle. It
would be preferable to use as many of
the processors as possible and have the
time needed to process an image win-
dow be a function of the number of
pixels in that window.

We have been studying the use of
data replication techniques to achieve
the goal of efficient focus-of-attention
vision on massively parallel machines.’
We replicate the window to be pro-
cessed many times and decompose ba-
sic image analysis operations into
components that can be computed si-
multaneously on a SIMD machine. We
briefly describe this research in the next
section, “Replicated-data algorithms.”

Contours (extended edges) are im-
portant image structures for both match-
ing and recognition. Many computation-
al stereo models and motion analysis
models are based on an analysis of the
geometry of image contours. Addition-
ally, most object recognition systems
operate by initially reducing the inten-
sity image to a set of contours and then
matching their geometric properties
against stored models.

Contours are marked in images by
processes such as edge detection and
thresholding. Although it is possible to
operate on the contours while they are
embedded in the two-dimensional im-
age, several reasons make it desirable,
especially on richly interconnected ma-
chines like the Connection Machine, to
transform the image contours from their
image-plane embedding to a linear repre-
sentation. The two primary reasons are

(1) The original image will ordinarily
have far more pixels than the number of

February 1992

processors in the massively parallel com-
puter. However, the number of pixels
marked as edges by an edge detector is
ordinarily only a small percentage of
the pixels in the image. If we can re-
move the contour pixels from the image
plane and store themin linear datastruc-
tures, then we obviate the need to pro-
cess the “empty” space in the edge im-
age and reduce the “virtual processor
ratio” (the ratio of the number of logi-
cal processors needed to perform an
operation to the number of available
physical processors) to 1.

(2) Richly connected machines like
the hypercube-connected Connection
Machine efficiently support a set of very
powerful operations calledparallelpre-
fix, orscan, operators. These let us com-
pute properties of processor subsets in
time proportional to the logarithm of
the subset size. Because of the arbitrary
pattern of processor addresses encoun-
tered when traversing an image con-
tour, prefix operations cannot be effec-
tively applied to the contours while they
are embedded in the image plane. Trans-
forming the image contours to a linear
representation allows us to use these
prefix operations.

In summary, processing contours in
their image-plane embedding makes the
processing time proportional to the size
of the image, while operating on them
in the compact, linearized representa-
tion makes the time proportional to the
logarithm of the longest contour in the
image. This is a significant difference.
The key is to perform the transforma-
tion from the image to the linear repre-
sentation efficiently. This transforma-
tion involves, as a first important step,
ranking the pixels in each contour. In a
previous paper* we presented one sim-
ple O(log N) algorithm for ranking im-
age contours (containing N points) and
discussed its implementation on the
Connection Machine. In this article we
sketch the algorithm and illustrate the
advantages of linearizing contours by
considering the problem of piecewise
linear approximation of contours.

Replicated-data algorithms. Focus-of-
attention vision can be supported by an
approach based on techniques of data

replication (see Narayanan and Davis
for more details’). Our approach in-
volves replicating image windows many
times on the processor array and de-
composing a computation into subtasks
that are solved simultaneously using the
copies. The partial results from the cop-
ies are combined to generate the overall
problem solution. The technique uses
data parallelism within each copy of the
data structure and operation parallel-
ism across the copies. The justification
for this approach is that the number of
processors is becoming a less critical
resource in data-parallel computing us-
ing massively parallel SIMD processor
arrays, and its importance will continue
to decline. To speed up processing of
the relatively small data structures that
arise in focus-of-attention vision on such
machines, we need to devise techniques
using a greater number of processors
than there are data elements in the data
structure, and divide the task performed
on each data element among multiple
processors.

Data-parallel algorithms depend on
efficient embedding of the data struc-
ture onto the topology of the processor
array machine’s interconnection net-
work. In replicated-data algorithms,
embedding has two dimensions: (1)
Embedding of the individual copies must
map proximate data elements to adja-
cent processing elements; (2) corre-
sponding data elements in different cop-
ies should have an efficient inter-
connection pattern among themselves
for efficient computation across the cop-
ies. The mechanisms provided by the
machine to distribute the data to the
different copies and to combine the par-
tial results from the copies are also crit-
ical in the design of a replicated-data
algorithm.

We illustrate our technique usingdig-
ital image convolution as an example.
Digital image convolution by a two-
dimensional kernel of weights is used in
a variety of operations in image pro-
cessing - for example, in smoothing
and edge detection. Digital image con-
volution by a k x k kernel, for an odd
number k, is defined as follows: Assume
the indices of the kernel range from
-1k / 21 to lk / 2].TheneachpixelP(u,
v) of the image is mapped to a con-

69

Table 1. Comparison of the convolution algorithms on the Connection Ma- communications and arithmetic opera-
chine. Timing of convolution is shown in seconds for random image and kernel. tions.

Image
Size

64 x 64
64 x 64
64 x 64
64 x 64
64 x 64
64 x 64

Kernel
Size

3x3
5x5
7x7

11 x 11
15 x 15
21 x 21

VP Replicated-Data One-Copy
Ratio Algorithm Algorithm

4 0.014 0.005
8 0.023 0.024

16 0.050 0.091
32 0.098 0.367
64 0.212 1.363

128 0.400 5.355

We analyzed the replicated-data con-
volution algorithm on different com-
mon interconnection networks and de-
termined the results for binary
hypercubes, the underlying architecture
of the CM2. The replicated-data algo-
rithm performs better than the single-
copy algorithm on hypercube architec-
tures. For computing the convolution
over a k x k neighborhood of an II x n
image using k2 copies, the speedup is
given by

volved value C(u, v) as given in

kl2 k/2

C(u,v) = c c P(u +i,v + j)K(i,j)

i=-k/2 j=-k/2

where P is the image array and K the
kernel array.

The replicated-data algorithm to com-
pute the convolution of an n x n image,
where n = 2”-‘, by a k x k kernel of
weights is given below. The algorithm
uses k2 copies of the image. These cop-
ies can be visualized as forming a two-
dimensional square array whose indices
range from - Lk / 21 to [k / 21. The ker-
nel weights are distributed one per copy
such that copy (i,j) gets the value K(i,j)
for -k/2 5 i < k/2 and -kl2 2 j < k/2.

The algorithm’s four steps are

(1) Using a scan operation with copy
operator, copy the image stored in copy
0 to all copies.

(2) Broadcast the kernel weights to
the copies in k2 steps such that all pro-
cessing elements (PEs) of the copy (i, j)
get the kernel weight K(i, j).

(3) The PE allocated to pixel (u, v) of
copy (i, j) of the image performs the
following computation: Obtain the pix-
el value from PE (u + i, v + j) within the
same copy (assume that all pixels out-
side the image have a gray level of 0)
and store it in P as its pixel value. Mul-
tiply this value by the kernel weight
allocated to the copy K(i, j) and store
this result in C.

(4) Perform a scan operation with
“add” as the operator on C across the
copies of each pixel of the image and
store the result in a designated copy, say
copy (0,O). The scan result gives the
convolved image for each pixel.

The replicated-data convolution al-
gorithm was implemented on a 16,384-
processor Connection Machine CM2.
Table 1 compares the algorithm’s per-
formance with that of a single-copy data-
parallel algorithm. The virtual proces-
sor capability of the Connection
Machine, in which each physical PE sim-
ulates multiple PEs, was used in the
implementation, since the replicated-
data algorithm needs many more pro-
cessors than the physical array can sup-
port. The number of virtual PEs each
physical PE simulates is called the vir-
tual processor ratio, or VP ratio (given
in the third column of the table). The
fourth column gives the timing of the
replicated-data algorithm. The timing
for the single-copy algorithm is given in
column five when the CM2 was config-
ured to have the same VP ratio as the
corresponding replicated-data algo-
rithm, thus making the comparison fair.
The front-end computation overhead
was negligible in both cases. On the
whole, the replicated-data algorithm
achieves impressive speedup over the
single-copy version for image convolu-
tion operations.

Replicated-data algorithms reduce
the computation time by exploiting
operation parallelism, but they incur
overhead in distributing the data to the
copies and in combining the partial re-
sults from them. This overhead is due to
communications and computations
across the copies of the data structure
and depends on the efficiency of those
operations when multiple copies are
mapped onto the interconnection net-
work. This efficiency is affected by the
topology of the interconnection network
and the time to perform near-neighbor

s=
k2

2 log k
2ty t,

+ t’f
t, i-t, -tt; t,+t,+t’t

where t; is the time for a near-neighbor
communication, tP is the time for a gen-
eral hypercube communication, to is the
time for an addition on the machine,
and t, the time for a multiplication.
Figure 1 compares the speedup predict-
ed by the above equation with the speed-
up obtained in practice on the CM2.

There are other low-level-vision op-
erations that benefit from the technique
of data replication. Previously, we pre-
sented analysis and implementation re-
sults of the replicated histogram algo-
rithm.’ Table lookup, Hough transform
computations, and co-occurrence ma-
trix computations are some of the other
operations that can be speeded up using
techniques similar to those used in the
histogram algorithm.

Image algebra is an architecture-in-
dependent language that can describe a
large class of image operations. Convo-
lution belongs to the class of general-
ized template operations defined in
image algebra. We developed a method
to automatically generate a replicated-
data algorithm for any image operation
that can be described in terms of a gen-
eralized template operation.’ We also
developed replicated-data algorithms for
rank-order filters, which are local non-
linear image operations. Rank-order fil-
ters are expensive to compute on SIMD
machines, as they involve independent
sorting of the neighborhood pixels within
each processor. Sorting can be per-
formed quickly if the neighborhood el-
ements are distributed among many

70 COMPUTER

18.01 I I I I I I I I I

processors using the sorting algorithms
of the underlying interconnection net-
work. For instance, k neighborhoodpix-
els can be sorted in a replicated scenar-
io on the hypercube in O(log* k) time,
whereas independent sorting on each
PE takes O(k2) time on SIMD architec-
tures. By assigning different areas of
the search space to different copies of
the data structure, we are extending the
replication technique to problems in
intermediate- and high-level vision that
contain a combinatorial component.

16.0

14.0

12.0

Theoretical -
Experimental - - -

2
$ 10.0
x
co 8.0

i
6.0

t

Image contour analysis. We turn now
to problems associated with the effi-
cient processing of image contours us-
ing hypercube-connected massively
parallel computers. An important ad-
vantage of hypercube machines like the
Connection Machine over the more com-
mon mesh network is that one can effi-
ciently compute parallel prefix opera-
tions using the hypercube network.
However, such operations can be ap-
plied only to a sequence of processors in
which each processor can randomly ac-
cess information from processors dis-
tance 2’ away from it, where i is an
integer greater than zero. Since a con-
tour can wind freely through an image,
the sequence of processor addresses
associated with the pixels on a contour
will not generally have this property.
Below we present an efficient algorithm
for ranking the pixels on a contour.
Once the pixels are ranked, the contour
can be moved to a new set of processors
whose addresses will form a monotonic
continuous sequence (by simply mov-
ing the ith contour element to processor
i), thus allowing random access between
processors. The algorithm we present
runs in O(log N) time (where N is the
length of the contour) on either an ex-
clusive read, exclusive write (EREW)
parallel random access machine or a
distributed-memory machine with
EREW ability between memory mod-
ules. (See the literature for more de-
tails.*)

4.0 -

.-

0.0 . I I I I I I 1 I
3 5 7 9 11 13 15 17 19 21

Neighborhood size k

Figure 1. Comparison of experimental and theoretical speedups.

bor. Closed curves (curves that form a address seen so far, as well as the dis-
loop and have no endpoints) can also tance along the tour path to this maxi-
occur in the image. Our goal is to list ma1 node. In Figure 2, node 8 would be
rank all the curves in the image in par- the node with the maximum address.
allel such that all open curves have one Thus, after pointer jumping has termi-
of their endpoints marked as the head nated, all nodes in the Euler tour path
and all other pixels on that curve deter- will have identified node 8 as having the
mine their distance (along the curve) maximum address and will have com-
from that endpoint. For closed curves, puted the distance along the path to
any arbitrary pixel can be chosen as the node 8. At this point, a list ranking for
head, as long as all pixels on the curve the open curve can be computed by
agree on which pixel is the head and simply having each pixel compute the
every pixel determines its distance from minimum value of the distance to node
that head in a consistent direction (clock- 8 for the two nodes associated with that
wise or counterclockwise). pixel.

The algorithm starts with two point- Many details have been omitted here,
ers, Pl and P2, pointing to neighboring such as how to initiate the Euler tour
pixels. The algorithm uses these point- path, when to terminate the pointer-
ers to form an Euler tour path within jumping loop, and the changes neces-
each curve. Figure 2 illustrates this for a sary to handle closed curves; a more
five-pixel open curve. If the Euler tour detailed discussion is available.’
path is followed around an open curve, The list-ranking algorithm was im-
each pixel on the curve will be visited plemented on the Connection Machine.
exactly twice, while the two endpoints Table 2 shows the results obtained by
are visited only once. Let’s call each running our EREW O(log N) list-rank-
element (pointer plus distance value to ing algorithm on the CM2 for different
be computed) in the
Euler tour path a node.
The Euler tour is easilv Pixel: 1 2 3 4 5

The problem is as follows: We are
given an N X N binary image that con-
tains only thin curves. Each pixel on
each curve has exactly two neighboring
pixels adjacent to it, with the exception
of endpoints, which have only one neigh-

initialized.
After the Euler tour

path is initialized, each
pointer in the path re-

Pointer 1:

Pointer 2:

peatedly does-pointer List ranking: 4 3 2 1 0
jumping (distance dou-
bling) while remember- Figure 2. Example of Euler tour path on an open
ing the maximum node curve with five pixels.

February 1992 71

Table 2. Result of CRCW and EREW O(log IV) time algorithm versus O(N) time algorithm (virtual processor ratio = 8).

Curve CRCW Algorithm
Length Iterations Time (ms)

EREW Algorithm
Iterations Time (ms)

O(N) Time Algorithm
Iterations Time (ms)

64 5 193 8 236 64 605
128 5 201 9 283 128 1,219
256 6 244 10 334 256 2,438
512 6 262 11 387 512 4,859

1,024 I 334 12 476 1,024 9,696
2,048 8 487 13 726 2,048 19,410
4,096 8 715 14 1,162 4,096 38,827

longest curve lengths. An image can
contain many curves, and the algorithm
will rank them all simultaneously. How-
ever, the time needed to rank the entire
set of image curves is determined by the
length of the longest curve in the image.
As a comparison, the running times re-
quired by the concurrent read, concur-
rent write (CRCW) algorithm, present-
ed elsewhere,? are also shown, as are
times for a trivial linear-time algorithm
that propagates the list-ranking infor-
mation along each curve pixel by pixel.
We can see that the EREW algorithm is
slower than the CRCW algorithm, but
both are much faster than the linear-
time algorithm. The algorithms were
applied to a 512 x 512 image using 8,192
physical processors; thus, the VP ratio
was 8 for all these experiments.

Next, we use piecewise linear approx-
imation of curves as an example to illus-
trate how contours can be processed
efficiently once they are linearized. Peu-
cker devised a method for finding piece-
wise linear approximations of curves by
breaking curves at points that are far-
thest from the line that connects the two
endpoints of the curve. By repeatedly
applying this curve-breaking method
until all pixels of each curve are within
a threshold distance from the line con-
necting the endpoints, we can obtain a

good piecewise linear approximation.
This algorithm can be implemented

easily on our monotone contiguous
mapping between pixels and processors.
The algorithm involves the following
steps:

(1) Perform a reverse first scan on
the x and y coordinates, so that the first
processor of each curve segment has the
X, y coordinates of the two endpoints of
the segment.

(2) The first processor of each curve
calculates the coefficients of the line
that passes through its endpoints.

(3) A forward first scan is performed
to broadcast the coefficients of this line
to all pixels in this curve.

(4) All pixels calculate, in parallel,
the distance between themselves and
the line joining the endpoints.

(5) A reverse max scan is performed
on this distance concatenated with the
processor ID number of each pixel. This
results in the first processor in each
segment’s knowing the processor ID
number of the largest address processor
having maximal distance from the line.
Let m, be the address of the processor
having maximal distance in curve seg-
ment i.

(6) If this maximum distance is small-
er than a threshold, the segment de-

Table 3. Result of applying the algorithm.

Total
Processors Pixels

Splitting Algorithm
Cd Iterations Time (ms)

8,192 7,706 581 800 5 36
8,192 6,735 515 700 5 37
8,192 7,943 630 877 6 46

72 COMPUTER

selects itself and is idle through steps 7
and 8. If all segments in the image de-
select, the algorithm terminates.

(7) A forward first scan is used to
broadcast m, to all processors in curve
segment i.

(8) Processor m, sets its segment flag
to “True,” thus splitting curve segment
i for the next iteration.

(9) Steps 1 through 8 are repeated
until the algorithm finally terminates at
step 6.

We applied this piecewise linear ap-
proximation algorithm to three differ-
ent 512 x 512 test images using the scan
instructions available on the CM2. Ta-
ble 3 shows the results. Edge detection
and the list-ranking algorithm were ap-
plied to the three images, and the re-
maining pixels were packed into mono-
tone contiguous processors. At this point
each image contained C,,,,, contours,
and after applying the algorithm, each
contained Crnd linear segments. We can
see that typical images will require five
to six iterations of the algorithm before
termination. On the CM2, each itera-
tion takes roughly 7 milliseconds.

We are working to develop practical
curve-matching algorithms, as well as
stereo-matching algorithms. We have
also worked on an efficient parallel al-
gorithm for computing the visibility
graph of a polygon by using only paral-
lel prefix operations for communica-
tion (closed curves can be transformed
into polygons by the piecewise linear
approximation algorithm).

The research discussed here focuses
on the effective use of massively paral-
lel computation for representative prob-
lems in intermediate-level vision. One

of the greatest challenges facing the
image understanding community is to
discover how to use parallelism to ad-
dress problems in high-level vision -
that is, image interpretation and scene
analysis. While image understanding
itself is the least developed aspect of the
field, we can see several architectural
solutions emerging in the current de-
cade. These include the use of hetero-
geneous but tightly coupled systems like
the Image Understanding Architecture,
which attempts to capture one of the
basic image understanding paradigms
of the 1980s and the use of homoge-
neous massively parallel systems, which
use a single computational paradigm
(for example, neural computing, con-
nectionism, constrained combinatorial
analysis) to address high-level-vision
problems. These and alternative vision

architectures deserve the attention of
vision researchers in the 1990s.B

Acknowledgments
The support of the Defense Advanced

Research-Projects Agency (DARPA Order
No. 6350) and the US Armv Engineer TODO-
graphic ’ Laboratories under contract
DACA76-88-C-0008 is gratefully acknowl-
edged.

References
1. P.J. Narayanan and L.S. Davis, “Repli-

cated-Data Algorithms in Image Process-
ing,“Tech. Report CAR-TR-536/CSTR-
2614, Center for Automation Research,
University of Maryland, College Park,
Md., 1991.

2. L.T. Chen and L.S. Davis, “A Parallel
Algorithm for List Ranking Image Curves

in O(log N) Time,” Proc. DARPA Image
Undersrandina Workshoo. 1990. VW. 805-
815. Also Teih. Repor; CAR-Tk-5411
CS-TR-2629, Center for Automation
Research, University of Maryland, Col-
lege Park, Md.

P.J. Narayanan is a doctoral student in com-
puter science at the University of Maryland
at College Park, where he works in the Com-
puter Vision Laboratory. His research inter-
ests include parallel algorithms and architec-
tures, and computer vision.

Ling Tony Chen is a doctoral student in
computer science at the University of Mary-
land at College Park. His research interests
are computer vision, parallel algorithms, and
shape analysis.

Larry S. Davis is a tenured professor in the
Department of Computer Science and direc-
tor of the University of Maryland Institute
for Advanced Computer Studies. He has
published extensively on topics in image pro-
cessing and computer vision.

A Software Environment for Parallel Computer Vision
Leah H. Jamieson, Edward .I. Delp, and Chao-Chun Wang,
Purdue University, West Lafayette, IN 47907

Juan Li, IBM, San Jose, CA 95193
and Frank J. Weil, Motorola, Schaumburg, IL 60196

w

e are developing a soft- problem domain can make the high- The software environment consists of
ware environment tailored performance algorithms and the sophis- three principal components - DISC,
to computer vision and im- ticated algorithm techniques being de- Cloner, and Graph Matcher-shown in

age processing (CVIP). Although ob- signed by algorithms experts more Figure 1. At the heart of the environ-
taining highest performance on parallel readily available to CVIP researchers. ment, and key to the operation of all
systems will almost certainly
require sophisticated knowl-
edge of parallel processing
(for example, see Stout’), it is
both unrealistic and undesir-
able to expect a researcher in
the CVIP area to be an expert
in parallel problem-solving
techniques or parallel archi-
tectures. It is essential to pro-
vide tools that let applications
researchers achieve reason-
ably high performance at a
reasonable level of program-
ming effort. The software en-
vironment focuses on how in-
formation about the CVIP

i

I Cloner
Developing

new algorithms I

I
Figure 1. Overview of the software environment for
computer vision and image processing.

three components, is a set of
algorithm libraries, along with
a metalevel of algorithm char-
acteristics that abstract infor-
mation about the library pro-
grams. The environment also
includes traditional compilers,
debuggers, and operating sys-
tems components. However,
our goal is to exploit the spe-
cial characteristics of CVIP to
achieve easier algorithm de-
velopment and better perfor-
mance than can be expected
with general-purpose tools;
therefore, we focus on the sub-
systems in Figure 1. Each com-

February 1992 73

ponent addresses a different aspect of
the problem of rapid prototyping for
CVIP algorithms and tasks:

l DISC (dynamic intelligent schedul-
ing and control) supports experimenta-
tion at the CVIP task level by creating a
dynamic schedule from a user’s specifi-
cation of the algorithms that constitute
a complex task.

l Cloner is aimed at the algorithm
development process and is an interac-
tive system that helps a user design new
parallel algorithms by building on and
modifying existing library algorithms.

l Graph Matcher performs the criti-
cal step of mapping new algorithms onto
the target parallel architecture.

We have completed initial implementa-
tions of DISC* and Graph Matcher’;
work on Cloner is in progress. The re-
mainder of this article summarizes the
components of the CVIP software envi-
ronment.

DISC: A dynamic scheduler for exe-
cutingcomputer vision tasks. The DISC
system is designed to facilitate system
prototyping, the experimental process
during which a user tests strategies for
performing a complex task by trying
different component algorithms, differ-
ent orderings of algorithms, and differ-
ent strategies for controlling the selec-
tion and sequencing of algorithms. DISC
is implemented as an expert system that
uses a library of low-, mid-, and high-
level-vision algorithms and alternative
parallel implementations, a database of
execution characteristics of CVIP algo-
rithms, rule-based heuristics, and the
current system state to produce and con-
tinually update a schedule for the sub-
tasks (algorithms) that constitute the
overall task. The scheduler keeps track
of what subtasks are potentially execut-
able and chooses the best candidate by
considering the relative importance of
finishing the subtask quickly and the
extent to which the current allocation
of data in the machine partitions (sub-
sets of processing elements) matches
the data allocation needed by the sub-
task. DISC also controls repartitioning
and compaction of the system.

Figure 2 is a graph representing data

74

dependencies among the algorithms con-
stituting a sample task. The primitives
of the DISC language are the library
algorithms. The graph is derived from a
sequential listing of the algorithms and
their arguments. The data dependen-
cies are derived from the input/output
specifications for the parameters for each
algorithm. Once a subtask is chosen for
execution, the scheduler selects the most
suitable implementation of that subtask
from the library. Implementations may
differ by

l the way data is allocated to process-
ing elements (for example, pixel data
allocated by rows versus by square
subimages, and contours allocated
by object versus by coordinates);

l the format of the input and output

Algorithm
characteristics

The ability to characterize algo-
rithms is key to the DISC and Clon-
er systems. The characteristics
used are derived from the following
general set of parallel-algorithm
characteristics:

l Nature of parallelism: data or
function.

l Data granularity or module
granularity: the size of the data
items processed as a unit or the
size of independent modules.

l Degree of parallelism.
l Uniformity of operations, ex-

pressed as the smallest data granu-
larity at which uniform operations
are performed.

l Synchronization requirements
and precedence constraints.

l Static/dynamic character of the
algorithm, in terms of the pattern of
process generation and termination.

l Data dependencies and related
issues of data allocation and mem-
ory access patterns.

l Five characteristics shared by
serial and parallel algorithms: fun-
damental operations, data types
and precision, memory require-
ments, data structures, and I/O.

parameters (for example, binaryim-
age versus edge list);

l mode (single instruction, multiple
data, or SIMD; or multiple instruc-
tion, multiple data, or MIMD); and

l range of number of processors us-
able by the implementation.

DISC selects an implementation based
on how well its characteristics coincide
with the current data allocation, data
format, and mode of the chosen system
partition, and based on the expected
relative speedup for the size of the par-
tition. The scheduling is performed dy-
namically to handle situations common
in vision applications: algorithms for
which the execution time depends on
the input image (for example, boundary
tracing) and tasks in which the actual
sequence of algorithms executed may
vary depending on characteristics of the
image (for example, the Edge linking/
Edge continuity test loop in Figure 2).

DISC has been implemented with the
PASM (partitionable SIMD/MIMD)
parallel-processing system as its target
architecture. Evaluation to date has
consisted of simulations of tasks cover-
ing a spectrum of dependency graphs.
In these tests, each library algorithm
was represented by at least 12 imple-
mentations - typically two or three
different implementation strategies ex-
ecutable on six different partition sizes.
For algorithms with image-dependent
execution times, the simulated times
were randomized by the simulation con-
troller, and at least 100 runs were per-
formed.

Performance was evaluated using
measures including utilization and sched-
uling overhead. Utilization is measured
as the percentage of the processor-time
space during which processors are not
idle. Figure 3 shows a processor-time
diagram for the task in Figure 2. Over
the nontrivial tasks on which DISC has
been tested, a 77-percent average utili-
zation was achieved, and on the tasks in
the test suite for which the optimal sched-
ule was known, DISC obtained the op-
timal schedule.

Scheduling overhead is used to assess
the amount of overhead DISC incurs in
creating a schedule. The scheduling over-
head is counted as the number of rules

COMPUTER

Input image

A

JI
w

\ JI

Edge Scene model Texture
detection

Scene d&cription

Processors
*

Median filter I

Edge link

Edge continuity

Boundary trace
a--

II

Region
formation

Object recognition

Figure 2. Algorithm data-dependency graph for a CVIP task Figure 3. Example processor-time diagram for the task in
to locate tanks in forward-looking infrared radar images. Figure 2. (Time axis is not to scale.)

fired to begin the execution of an imple-
mentation of each algorithm. Using re-
alistic assumptions to relate simulation
time units and real time, scheduling
overhead was measured to be less
than 0.1 percent of the overall execu-
tion time.

Current work on DISC includes ex-
pansion of the library, refinement of the
scheduling heuristics, performance anal-
ysis based on stochastic modeling of
image-dependent execution character-
istics, and packaging as a tool portable
to a variety of parallel architectures.

Cloner: An interactive environment
for developing parallel algorithms. Clon-
er is a software reuse tool that helps a
user design parallel algorithms by build-
ing on and modifying existing library
algorithms. It takes advantage of the
fact that CVIP algorithms, especially
for low-level vision, are often highly
structured and that many image- and
graph-based algorithms share the same,
or a similar, structure. Cloner’s dual
goals are rapid prototyping and im-
proved code quality.

The library forms the heart of Cloner.
The user is provided with information

February 1992 75

about what algorithms and programs
the system “knows about” and is guided
through the process of developing a new
program by relating it to existing pro-
grams. This may be done by a combina-
tion of operations, including the adop-
tion and/or modification of library data
abstractions (objects), the composition
of library code segments, and the
modification of library code templates.
Emphasis is on providing a character-
ization of the library algorithms and
kernels to act as an interface between
the library and the user. Cloner exploits
reusable code at several levels:

l the data-structure/data-abstraction
level,

l the control structure level, and
l the algorithm level.

Interaction is via menus and queries
that lead the user through an adaptive
series of displays and questions designed
to let either the user or Cloner select
code templates. The questions are based
on characteristics of the algorithm in
terms of attributes such as data versus
function parallelism and dominant data
structures. Graphical displays show data-

dependency patterns associated with a
library program or kernel (for example,
an operation structured around a 3-by-
3.pixel window) and highlight potential
reusable code fragments (for example,
an optimized looping structure displayed
to delimit the control structure and the
replaceable loop body).

We are now building &loner, an X
window-based implementation of Clon-
er. Figure 4 on the next page shows an
example of the main Xcloner menu for
image-processing operations. The cate-
gories in the main menu bar identify the
major operations provided by Xcloner.
Each category provides a pull-down
menu. At the highest level, Xcloner is
machine independent. Information spe-
cific to the target parallel system resides
within the menu options and in the cod-
ing and mapping of the library algo-
rithms. The initial implementation fo-
cuses on image processing and
low-level-vision algorithms because the
obvious common structures for these
algorithms facilitate the development
of the user interface and library access
tools. However, many algorithms per-
formed in mid- and high-level vision use
well-defined structures such as graphs

Figure 4. Example of Cloner display for image-processing algorithms.

Pixels
Gray level 0 1 2 N-l

Generate votes

(a)

output

1 N Y D P

N

M

1 2 P

1

(b)

Figure 5. Dependency graph (a) and hypergraph (b) for a histogramming algo-
rithm. N = number of pixels. Hypernode labels show the number of DG nodes
combined to form the hypernode. Hyperedge labels characterize the pattern of
the edges merged to form the hyperedge: D = Distribute (one to many); P =
Parallel (one to one).

to represent regions and objects. Fu- directly (for example, by a data-depen-
ture work includes expansion of Cloner dency graph or dataflow graph, or as a
to include these algorithms. program that is transformed to such a

graph), then the critical step in mapping
Graph Matcher: Mapping CVIP al- the algorithm onto the parallel archi-

gorithms onto parallel architectures. If tecture involves the assignment of algo-
a user has specified a new algorithm rithm steps to processors. The objective

76 COMPUTER

is to equalize the work done by the
processors and to minimize overhead
from interprocessor communication.
General-purpose compilers and map-
ping tools are designed to perform this
function. However. in many algorithms
with regular structure, it is possible to
exploit prior experience to obtain map-
pings that might be difficult or prohibi-
tively time-consuming to derive using
general-purpose tools.

Graph Matcher uses pattern-match-
ing techniques to recognize the data-
dependency structure of a new algo-
rithm as an instance of a dependency
structure for which an algorithm-to-ar-
chitecture mapping is already known.
At the data-dependency level, especial-
ly in low-level vision and image pro-
cessing, many algorithms share commu-
nications patterns:

l patterns typical for window-based
algorithms,

l patterns typical for block-based al-
gorithms.

l patterns characteristic of transforms,
and

l patterns typical for collecting image
statistics.

At the process level, algorithms based
on the same paradigm (for example,
divide and conquer) may exhibit similar
communications requirements.

Graph Matcher consists of a library
of known data-dependency structures
and mappings of these structures onto
architecture configurations. The input
to Graph Matcher is a directed acyclic
graph representing a new algorithm. The
process of matching the input depen-
dency graph (DG) to one of the library
graphs can be formulated as a graph
isomorphism problem; however, the
complexity of graph isomorphism makes
direct and exhaustive comparison to the
library infeasible. Graph Matcher there-
fore relies on heuristics that use easy-
to-compute graph attributes and that
take advantage of the regular structure
of many image-processing algorithms.

In a candidate elimination step, easi-
ly measured features of the input DG
are compared to features of the library
DGs to eliminate library graphs from
further consideration. Features include

Table 1. Comparison of dependency-graph sizes and hypergraph sizes.

No. of No. of No. of No. of
Algorithm Parameters Nodes Edges Hypernodes Hyperedges

Histogram No. of pixels: N 3+2N 3N +l 5 4

Hough No. of pixels: N 2N+P+2 NP+NiP+I 5 4
transform No. of parameters: P

Threshold No. of pixels: N 3Nil 3N 4 3

Smoothing s-connected 11 10 3 2

Erosion
and dilation S-connected 10 9 3 2

graph size, simple connectivity proper-
ties, and properties of particular verti-
ces. Isomorphism testing against the
remaining library graphs uses an ap-
proach based on hypergraphs. Attrib-
uted hypergraphs have been used for
three-dimensional object recognition.
For the mapping problem, they are used
to reduce the size of regular DGs by
letting a single hypergraph node (a hy-
pernode) represent a set of nodes and
letting hyperedges represent connec-
tivity between hypernodes.

Figure 5 shows the data-dependency
graph and hypergraph for a histogram-
ming algorithm. Table 1 compares the
DG sizes and hypergraph sizes for a
number of algorithms. The use of hy-
pergraphs does not alter the asymptotic
time complexity of graph isomorphism.
However, it can yield graphs of such
reduced size that the test for isomor-
phism becomes feasible. For graphs with
little or no regular structure, the hyper-
graph approach may yield no reduction
in graph size, and therefore no savings
in the isomorphism testing. However,
for graphs with regular structure, sub-
stantial savings are realized.

We have proven that the heuristic
procedure for generating hypergraphs
from DGs preserves isomorphism. Un-
der conservative assumptions, the algo-
rithm has worst-case time complexity
O(n4), where n is the number of nodes in
the original DG. Under realistic assump-
tions the complexity is O(n*).

Graph Matcher has been implement-
ed and tested on the Purdue Image Pro-

February 1992

cessing Library. Areas of future work
on Graph Matcher include incorpora-
tion of techniques to calibrate “close-
ness” of matches between library and
input DGs, and the use of these mea-
sures to apply Graph Matcher to high-
level-vision algorithms where graph sim-
ilarity is a more appropriate criterion
than graph isomorphism.

Conclusions. Anecdotal reports
abound about researchers with scientif-
ic and engineering problems who have
tried to make use of parallel-processing
systems, and who have been almost fa-
tally frustrated in the attempt. Our ex-
perience with parallel-algorithm design
suggests that the regular structure of
many CVIP algorithms can form the
basis for an effective specialized paral-
lel-programming environment. Our goal
is to exploit the special characteristics
of CVIP to achieve easier algorithm
development and better performance
than can be expected with general-pur-
pose tools. DISC and Graph Matcher
and the in-progress Cloner are “proof-
of-concept” implementations demon-
strating the effectiveness of this special-
ized environmentm

References

1. Q. Stout, “Mapping Vision Algorithms
to Parallel Architectures,” Proc. IEEE,
Vol. 76, No. 8, Aug. 1988, pp. 982-995.

2. F.J. Weil, L.H. Jamieson, and E.J. Delp,
“Dynamic Intelligent Scheduling and

Control of Reconfigurable Parallel Ar-
chitectures for Computer Vision/Image
Processing,” J. Parallel and Distributed
Computing,Vol. 13,No. 3,Mar. 1992,~~.
273-285.

3. J. Li and L.H. Jamieson, “A System for
Algorithm-Architecture Mapping Based
on Dependence Graph Matching and Hy-
pergraphs,” Fifth Int’l Parallel Process-
ing Symp., IEEE CS Press, Los Alami-
tos, Calif., Order No. 2167, Apr. 1991,
pp. 513-518.

Leah H. Jsmieson is a professor of electrical
engineering at Purdue University. Her re-
search interests include parallel algorithms;
the application of parallel processing to
speech, image, and signal processing; and
speech recognition.

Edward J. Delp has been a professor of
electrical engineering at Purdue University
since 1984. His research interests include
image coding, medical imaging, ill-posed in-
verse problems in computational vision, and
nonlinear filtering using mathematical mor-
phology.

Chao-Chun Wang is a graduate student in
the School of Electrical Engineering at Pur-
due University. His research interests in-
clude parallel processing, parallel algorithms,
and distributed-system design.

Juan Li is an advisory engineer with IBM.
She has worked primarily in the areas of
parallel and distributed processing, fault-tol-
erant computer systems, and object-orient-
ed design.

Frank J. Weil is a technical leader in the
Software Engineering Research Laboratory
at Motorola’s Software Technology Center.
His research interests include software engi-
neering, artificial intelligence, scheduling sys-
tems, parallel processing, and speech and
image processing.

77

-~

