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INTRODUCTION 
A handwritten document now in the posses- 
sion of Dr. Herman H. Goldstine contains 
what is probably the earliest extant program 
for a stored program digital computer. Its 
author, the remarkably talented mathema- 
tician John von Neumann (1903-1957), was 
in the process of refining the stored program 
concept as he was writing this code; so his 
program represents a significant step in the 
evolution of computer organization as well 
as of programming techniques. In this paper 
we will therefore investigate the contents of 
yon Neumann's manuscript in some detail, 
attempting to relate its ideas to other de- 
velopments in the early history of high 
speed computing. 

The program we will study is not what we 
might expect an "ordinary" mathematician 
to have written; it does not solve a partial 
differential equation! Instead, it deals with 
what was considered at that time to be the 
principal example of a nonnumeric applica- 
tion for computers, namely, the problem of 
sorting data into nondecreasing order. 

Von Neumann chose this application for 
good reason. He had sketched out an order 
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code for a stored program computer, with 
numerical applications uppermost in his 
mind; there was no question that his pro- 
posed device could do the requisite arith- 
metic operations. The key question was 
whether or not the proposed instruction set 
provided a satisfactory means of logical 
control for complex processes, and so he felt 
that a sorting program would be a most 
instructive test case. Furthermore, the 
existence of IBM's special purpose machines 
for sorting gave him a standard against 
which he could measure the proposed com- 
puter's speed. 

Before we start to study yon Neumann's 
program, a few disclaimers are in order. In 
the first place, he probably never intended to 
have this program published and subjected 
to such scrutiny; although his manuscript 
is carefully documented, he probably wanted 
only to circulate it among a few interested 
colleagues. So when we find a few errors and 
a few instances of clumsy coding, we should 
realize that it was an early effort that was 
not supposed to represent a polished product. 

Second, we should realize that the histori- 
cal interest of this program is in great 
measure due to its connection with the de- 
velopment of instruction codes for stored 
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program computers; it is not the earliest in- 
stance of a computer program. We have 
Lady Lovelace's description of a program for 
calculating Bernoulli numbers that Babbage 
wrote for his Analytical Engine [1, Note G]; 
A. M. Turing's construction [16] of his 
abstract Universal Machine, which involves 
many important programming concepts; 
Eckert and Mauchly's first sample program 
for the ENIAC [4]; and a collection of 
numerical programs, dating from 1944, 
written by H. H. Aiken, G. M. Hopper, 
R. V. D. Campbell, R. M. Bloch, B. J. Lock- 
hart, and others, for the Harvard Mark I 
[10, Chs. 4, 6]. 

A third precaution: The notation used in 
this paper differs considerably from that 
used by von Neumann, so that modern 
readers can more easily understand what he 
did. Where he would write, for instance, 

15) c -}- (m' -- 1)(p ~- 1) ~-~ 14 [ p ~- 2, 

we will use an equivalent assembly-like 
language form, 

MOVEIN PIK p~- 1, BUFFER, [YPTR]. 

This new notation isn't completely trans- 
parent, but it seems to be an improvement 
which doesn't go so far that the machine is 
obscured. (For further information about 
yon Neumann's original notation, see the 
section on Storage Allocation and Timing.) 

To set the stage for our story, let us con- 
sider briefly the developments prior to 1945 
when yon Neumann wrote his sorting pro- 
gram. Several electromechanical calculators 
were essentially operational in the late 1930s 
and early 1940s: those of Stibitz [15] and 
Aiken [10] in America, and Zuse [3] in 
Germany. Another machine, which had 
electronic circuitry for arithmetic although 
it was slowed down by mechanical memory 
elements, was also developed in the late 
1930s at Iowa State College, by John V. 
Atanasoff and Clifford E. Berry [see 12]; 
this machine was designed to solve sets of 
simultaneous linear equations. 

In August 1942, John W. Mauchly of the 
Moore School of Electrical Engineering in 
Philadelphia wrote a memorandum to his 
colleagues summarizing briefly the ad- 
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vantages which could be expected from an 
electronic high speed computer such as he 
felt could reasonably be developed. He was 
familiar with previous American develop- 
ments in computing, and he was also aware 
of the extensive calculations needed by the 
Ballistic Research Laboratory (BRL) in 
connection with World War II; many of 
these calculations were currently being done 
on a Differential Analyzer at the Moore 
School. I t  was by no means obvious that a 
useful electronic computer could be built; 
but Mauchly and a young electrical engineer 
named J. P. Eckert, Jr., drew up a tentative 
technical outline of a suitable machine, and 
Prof. J. G. Brainerd decided it was worth the 
risk of committing the Moore School to a 
major effort in this direction. A technical 
proposal was submitted to Col. Leslie E. 
Simon, Col. Paul N. Gillon, and Lt. Herman 
H. Goldstine of the BRL in the spring of 
1943, and in a remarkably short time the US 
government entered into a contract with the 
Moore School for research and development 
of high speed electronic calculating devices, 
beginning July 1, 1943. The project, super- 
vised by Brainerd, had Eckert as chief 
engineer, Mauchly as principal consultant, 
and Goldstine in charge of technical liaison 
with BRL. A first machine, the ENIAC 
(Electronic Numerical Integrator And Com- 
puter), was soon designed, and its design was 
frozen at an early stage so that future efforts 
could be concentrated on its production and 
testing; it was dedicated on February 15, 
1946. (For further details about the develop- 
ment of the ENIAC, see [6].) 

The ENIAC was a highly parallel com- 
puter; weighing over 30 tons, it involved 
over 19,000 vacuum tubes, 1500 relays, etc. 
Because of its electronic circuitry, it was 
considerably faster than any computing 
machine previously built. But it had only 20 
words of internal memory, and it required 
complicated manual operations for setting 
up a program on plugboards. Long before 
ENIAC was completed, it became clear to 
the designers that they could utilize the 
equipment more efficiently if they would 
adopt serial methods instead of so much 
parallelism; so in January 1944 they sketched 
out a "magnetic calculating machine" in 

which successive digits of numbers were 
transmitted serially from a memory device 
to central electronic computing circuits and 
back again. Early in 1944, Eckert and 
Mauchly invented an acoustic delay-line 
memory device which made it possible to 
obtain a fairly large storage capacity with 
comparatively little hardware; so it became 
evident that great improvements over 
ENIAC could be made, at considerably less 
cost. "Therefore, by July, 1944, it was 
agreed that when work on the ENIAC 
permitted, the development and construc- 
tion of such a machine should be undertaken. 
This machine has come to be known as the 
EDVAC (Electronic Discrete VAriable 
Computer)" [5]. 

In the latter part of 1944, John yon Neu- 
mann (a consultant to BRL) became a 
consultant to the EDVAC project. He con- 
tributed to many discussions on logical 
circuitry, and he designed the order code 
which was to be used. In the spring of 1945, 
he wrote a preliminary report [17] which 
gives a detailed discussion of arithmetic 
circuitry and the motivation for various 
design decisions which were made as EDVAC 
evolved. This takes us to the beginning of 
our story. 

THE EARLY EDVAC 

VOD Neumann's first draft report [17, 18] on 
the EDVAC proposed building a serial 
computer with three 32-bit registers and 
8192 32-bit words of auxiliary memory. The 
three registers were called i and j (for inputs 
to the arithmetic circuitry) and o (for out- 
put) ; for convenience in what follows we will 
denote these registers by the upper-case 
letters I, J ,  and A. The EDVAC memory 
was to be divided into 256 "tanks" of 32 
words each, operating in a cyclic fashion. 
Word 0 of each tank would pass a reading 
station one bit at a time, then (32 bit-times 
later) word 1 would be ava i l ab le , . . . ,  finally 
word 31, then word 0 again, etc. Thus the 
accessing of information from tanks is essen- 
tially the same as we now have from drums 
or head-per-track disks. A bit-time was to be 
1 #sec, so the cycle time for each tank came 
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to  32 × 32 = 1024 ~sec. The  t a n k s  were  to  
be c o n s t r u c t e d  f rom E c k e r t  and  M a u c h l y ' s  
m e r c u r y  d e l a y  l ines;  th i s  concep t  was  l a t e r  
used  in t he  m e m o r y  of the  U N I V A C  I 
c o m p u t e r  (1951). A l t h o u g h  y o n  N e u m a n n  
rea l i zed  t h a t  f a s te r  o p e r a t i o n  could  be 
ach ieved  wi th  a r andom-acces s  m e m o r y ,  t he  
on ly  k n o w n  w a y  of bu i ld ing  such m e m o r i e s  
economica l ly  was  the  " i conoscope"  (l ike a 
T V  tube ,  wi th  l igh t  or  d a r k  spo t s  c r e a t e d  and  
sensed  b y  an  e lec t ron  beam) ,  and  he t em-  
po ra r i l y  r e j ec t ed  i t  since i ts  r e l i ab i l i t y  was  
s t i l l  u n p r o v e d .  

E a c h  32-bi t  word  was  e i the r  a n u m b e r  or  
an  in s t ruc t ion  code;  t he  first  b i t  was  0 for  
n u m b e r s  and  1 for ins t ruc t ions .  Von Neu-  
m a n n  sugges ted  wr i t ing  b i n a r y  n u m b e r s  in 
reverse  order ,  wi th  the  l eas t  s ignif icant  
d ig i t s  a t  t he  left ,  s ince b i n a r y  n o t a t i o n  was  
u n f am i l i a r  a n y w a y  and  since the  ser ia l  
c i r cu i t ry  found  i t  mos t  conven i en t  to  process  
l eas t  s ignif icant  d ig i t s  first.  T h e  las t  b i t  of a 
n u m ber ,  fol lowing the  mos t  s igni f icant  b i t ,  
was i ts  s ign;  n u m b e r s  were r e p r e s e n t e d  in 
t w o ' s  c o m p l e m e n t  no ta t ion .  T h u s  the  word  

boblb2b3 . . .  b3ob31 , bo = O, 

d e n o t e d  the  n u m b e r  

2-~°bl + 2-2962 -}- 2-2Sb3 +4- " ' '  

+ 2-1b30 --  b31, 

and  30-bi t  f rac t ions  in the  range  - -1  _~ 
x < 1 were r ep re sen t ab l e .  F o r  add i t ion ,  
sub t r ac t ion ,  and  convers ion  opera t ions ,  the  
n u m b e r  could  also be r e g a r d e d  as the  in t ege r  

bl + 2b2 + 4b3 + . . .  + 229b30 - 23°b31, 

so t h a t  in t ege r s  in the  r ange  -230  ~ x < 23° 
were  r ep re sen t ab l e .  B i n a r y  coded  dec ima l  
in tegers  (abcdefg)lo were also a l lowed,  in t he  
fo rm 

0 0 0 0 ala2a3a4blb2b3b4 • • • glgsgag4, 

where  ala2aaa4 was the  code for  d ig i t  a, and  
blb2b3b4 was the  code for  d ig i t  b, etc. ,  in 
reverse  b i n a r y  order .  ( T h u s  0000 = 0, 
1000  = 1, 0 1 0 0  = 2 , - - - ,  0001  = 8, 
1001 = 9 . )  

I n s t r u c t i o n  words  were to  have  the  form 

I aoa~aaa3a4bob~b2OOOOOOOOOOyoyly2y, y.xcx~xaxax, xtX6XT, 

where  a = aoala2a3a4 d e n o t e d  an  ope ra t ion  
code,  b = boblb2 d e n o t e d  a v a r i a n t ,  y -- 
y0 + 2yl  + 4 y 2 . +  8y3 Jr 16y4 d e n o t e d  a 
word  pos i t i on  w i th in  a t a n k ,  and  x = 
x0 + 2Xl -4- . ' .  + 128x7 d e n o t e d  a t a n k  
number .  T h e  fol lowing a r i t hme t i c  o p e r a t i o n  
codes  were p roposed ,  affect ing the  reg i s te r s  
I ,  J ,  and  A : 

• AD (a = 00000). Se tA  ( - - I A - J .  
• SB (a = 00001). Se tA  ~ - - I -  J 
*ML (a = 00010). Set A (-- A -4- I X J 

(rounded). 
• DV (a = 00011). Set A ~-- I / J  (rounded). 
• SQ (a = 00100). Set A ~-- ~/I  (rounded). 
• I I  (a = 00101). S e t A ~ - - l .  
• JJ  (a = 00110). Se tA  ~--J. 
• SL (a = 00111). if A > 0, set A ~-- I ;  if 

A < 0, s e t A ~ - - J  
• DB (a = 01000). Set A ~-- binary equivalent 

of decimal number I. 
• BD (a = 01001) Set A ~- decimal equiva- 

lent of binary number I. 

(As s t a t e d  in t he  I n t r o d u c t i o n ,  we are  
chang ing  von  N e u m a n n ' s  n o t a t i o n ;  the  
mnemonic  symbo l s  for  these  codes are  a d  hoc 
symbo l s  con t r iv0d  sole ly  for  the  pu rposes  of 
the  p r e se n t  paper .  N o t e  t h a t  mu l t i p l i ca t ion ,  
d ivis ion,  and  square  roo t  were  to  p roduce  
r o u n d e d  resu l t s .  N o t  al l  de t a i l s  of these  
ope ra t i ons  were  fu l ly  specif ied b y  yon  
N e u m a n n ;  d iv i s ion  and  square  roo t  would  
change  the  c o n t e n t s  of I ,  b u t  i t  is no t  c lear  
t h a t  a v a l i d  r e m a i n d e r  would  be le f t  there .  
T h e  d e c i m a l - t o - b i n a r y  and  b ina ry - t o -de c i -  
ma l  o pe ra t i ons  were  no t  worked  out .  Ap-  
p a r e n t l y  overf low cond i t ions  caused  no 
specia l  ac t ion . )  

Each  of t he  above  a r i t h m e t i c  ope ra t i ons  
was  to  be used  wi th  one of seve ra l  v a r i a n t s  
specif ied b y  b = boblb2 : 

• H (b = 111). Do the operation as described 
above, holding the result in A. 

• A (b = 100) Do the operation as described 
above, then set J *-- I, I ~-- A, A <-- 0. 

• S (b = 000). Do the operation as described 
above, then store the result A in memory location 
yx and set A ~-- 0. 

• F (b = 101). Do the operation as described 
above, then store the result into the word immedi- 
ately following this instruction, set A ~ 0, and 
perform the altered instruction. 

• N (b = 110) Do the operation as described 
above, then store the result into the word immedi- 
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a te ly  fo l lowing th i s  in s t ruc t ion ,  se t  A ~-- 0, and  
skip t he  a l t e red  in s t ruc t ion .  

Thus, for example, ADS yx would have the 
effect of setting location yx to I -{- J ,  and 
clearing A to zero; JJA would interchange 
the contents of I and J, and clear A; SLH 
would set A to either I or J, according as the 
previous sign of A was 0 or 1. (The memory 
specification yx was ignored on all variants 
except S.) 

Besides arithmetic operations, the ma- 
chine could do the following: 

• J M P  (a --- "11000, b -- 000). Take  the  n e x t  
i n s t r u c t i o n  f rom locat ion  yx ( then  1 W yx, ete  ). 

• LOD (a---  10000, b = 000). S e t J ~ I ,  t hen  
se t  I to t he  c o n t e n t s  of m e m o r y  loca t ion  yx. 

Further codes a = 01010, 01011, 01100, 
01101, 01110, 01111 were reserved for input 
and output operations (which were not yet 
specified) and stopping the machine. 

There was an important exception to the 
operations as we have described them: Only 
numbers (not instructions) ever appeared ill 
the registers I, J ,  and A. When the LOD 
operations specified a memory address con- 
taining an instruction, only the yx part of 
that instruction was to be loaded into I; 
the other bits were cleared. Conversely, when 
storing into memory by means of variants 
S, F, and N, only the least significant 13 
bits of the number in A were to be stored 
in the yx part, if the memory location con- 
tained an instruction word. 

Instructions were to be executed from 
consecutive locations, unless the sequence of 
control was modified by a JMP order. If 
the control sequence would come across a 
number (not an instruction word), the effect 
would be as if an LOD instruction were per- 
formed referring to this number. 

Most instructions would be performed in 
one word-time, so that the machine could 
keep up with the speed of the long tanks 
where instructions were stored. But multi- 
plication, division, square root, and radix 
conversion took 33 word-times (1056 ~sec). 
References to memory, by means of LOD 
operations and the S variant, would require 
an additional 1024 ~sec unless the memory 
address was perfectly synchronized to match 
the following word of instructions. (For 

multiplication, division, and square root 
extraction, there was a little more leeway, 
since those operations actually were com- 
pleted in about 950 ~sec.) 

The reader will note that much of the 
space in instruction words is wasted. Von 
Neumann realized this, but did not think it 
important at the time, since [17, p. 96] the 
programming problems he had considered 
required only a small fraction of the memory 
for instruction storage. But we will see that 
he changed his mind later. 

The machine we have considered here 
differs slightly from yon Neumann's de- 
scription iD [17], since the modifications 
stated in his letter [18] have been included. 
He wrote, from Los Alamos to Philadelphia, 
"The contents of this letter belong, of course, 
into the manuscript [17], and I will continue 
the manuscript and incorporate these things 
also, after I get it back from you--if possible 
with comments . . ,  from you, Pres Eckert, 
John Mauchly, and the others." But the 
manuscript was never completed, nor were 
the modifications inserted when it was typed 
a month later, presumably because there 
were so many other things to be done. It is 
interesting to note that yon Neumann's 
letter [18] also proposed the design of a 
special typewriter for preparing programs 
from partially mnemonic input. Pushing a 
key marked -[- would cause the bits 100000 
to be assembled (the first six bits of an addi- 
tion instruction); then a key marked H 
would insert the subsequent bits 111000...00, 
forming a complete instruction word on a 
magnetic tape. 

The differences between [17] and the 
machine described here are chiefly concerned 
with improvements in the logistics of instruc- 
tion modification. (a) There was no variant 
N; instead, variant F would not treat the 
altered word as an instruction if it turned 
out to be a number. (b) The convention on 
loading only 13 bits of instructions was not 
present (although the convention about 
storing only 13 bits into instruction words 
was). (c) Three other variants, like S, A, F 
but not clearing register A, were originally 
included. 
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THE NEXT EDVAC 

Von Neumann's  let ter  says, " I  have also 
worked on sorting questions . . . .  I will 
write you about the details very soon." He 
said that  he had written an internal sorting 
program requiring about 130 words of in- 
structions; it could sort 500 p-word items 
on a one-word key in about 1 + .425 (p -- 1) 
minutes. "I  suspect tha t  these arrangements, 
which represent only a first at tempt,  could 
be improved . . . .  

" A t  any rate the moral seems to be that  
the EDVAC, with the logical controls as 
planned for 'mathematical '  problems, and 
without any modifications for 'sorting' 
problems, is definitely faster than the 
[contemporary IBM sorters, about 400 
cards/minute] . . . .  Since the IBM's  are 
really very good in sorting, and since accord- 
ing to the above, sorting can be meshed with 
the other operations of the EDVAC without 
human intervention or need for additional 
equipment,  etc., the situation looks reason- 
ably satisfactory to me . . . .  I t  is legitimate 
to conclude already on the basis of the now 
available evidence, tha t  the EDVAC is 
very nearly an 'all-purpose' machine, and 
that  the present principles for the logical 
controls are sound." 

But  von Neumann's  code for this sorting 
program does not seem to have survived; we 
can only say that  his timing estimates look 
reasonable, since for large p they come to 
slightly over 5 msec per pass per word 
transferred. The program which now is in 
Dr. Goldstine's files is roughly 80 times 
faster, due to important  improvements in 
machine organization which yon Neumann 
considered shortly afterward. This second 
EDVAC design was apparently never de- 
fined in as much detail as the previous one, 
but  a brief summary of its instruction codes 
appears in [5, p. 76] and we can deduce other 
properties by studying yon Neumann's  
program. Therefore we can reconstruct the 
main features of the machine. 

The chief improvement incorporated into 
this version of EDVAC was the introduction 
of "short  tanks"  whose capacity was one 
word each; this provided a small fast-access 
memory which essentially increased the 

number of registers, and the old I and J 
disappeared. Block transfer operations be- 
tween the short and the long tanks made 
many processes faster. The tentat ive plans 
in [5] call for 32 short tanks, and 2048 addi- 
tional words in 64 long tanks. "Combining 
this with the almost unlimited memory 
capacity of the magnetic tape (even though 
the numbers are not available here so 
quickly) it seems that  very few problems 
will exceed this capaci ty" [5, p. 81]. 

Here are the basic operations allowed by 
the new EDVAC code, exclusive of multi- 
plication and division [let C(s) denote the 
contents of short tank number s]: 

* P I K  s , t , x  Transfer  s consecutive words, 
s tar t ing at long tank location x, to s consecutive 
short  tanks, s tar t ing at short  tank number  t. If x 
is unspecified, the next  s words following this 
instruct ion are used, and the (s + 1)-th is the next  
instruct ion 

* P U T  s , t , x  Transfer  s consecutive words,  
s ta r t ing  at short  tank number  t, to s consecutive 
long tank positions s tar t ing at location x. If x is 
unspecified, the next s words following this instruc o 
tion are used, and the (s + 1)-th is the next  in- 
s truct ion.  

* A D D  s,t. S e t A  (--C(s) + C(t). 
- S U B  s,t. S e t A  ~-C(s)  - C(t). 
* S E L  s , /  I r A  ~ O, s e t A ~ - - C ( s ) ; i f A  ~ O, 

set  A ~-- C(t) 
• TRA x. Go to long tank location x (then x + 

1. etc.) for subsequent  instruct ions 
• JMP s. Go to short  tank number  s (then 

s + 1, etc ) for subsequent  instructions.  
• S T O s .  Set C(s) ~--A. 
• SET s , t  Se tC(s ) ( - -C( t )  

As before, operations which did not refer to 
long tank addresses took just one word- 
time (32 t~sec), with the exception of " long" 
arithmetic operations like multiplication and 
division. When a long tank location was 
specified, the machine waited until the 
desired word was accessible; at least two 
word-times were needed for the instruction 
T R A x ,  due to "long tank switching," if 
the instruction was executed from a short 
tank. 

A distinction was made, as before, be- 
tween numbers and instruction words: When 
STO or S E T  at tempted to store a new value 
into an instruction word, only tha t  part  of 
the instruction which specified a long tank 
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location x was to be affected, and the value 
in A was regarded as an integer• 

Tentat ive  plans for representing the 
instructions in memory are discussed briefly 
in [5, pp. 83-86]. 

THE SORTING PROGRAM 

Now we are ready to discuss von Neumann's  
program• His manuscript, writ ten in ink, is 
23 pages long; the first page still shows 
traces of the penciled phrase " T O P  
S E C R E T , "  which was subsequently erased• 
(In 1945, work on computers was classified, 
due to its connections with military prob- 
lems.) A facsimile of page 5, the first page of 
the program itself, appears as Figure 1. 

Von Neumann begins his memo by de- 
fining the idea of sorting records into order, 
and of merging two strings of records that  
have been sorted separately into a single 
sorted sequence. Then he states the purpose 
of the program: "We wish to formulate 
code instructions for sorting and for mesh- 
ing [i.e. merging], and to see how much 
control-capacity they tie up and how much 
time they require."  

He never actually gets around to coding 
the entire sorting routine in this document; 
only the merging process is described. For  
the merging problem, we assume that  n 
records Xo, xx, • • • ,  x,_x are given, consist- 
ing of p words each; the first word of each 
record is called its "key ,"  and we have 
key(xo) _< key(x1) _< . - .  < key(x,_l).  An 
additional m p-word records y0, y l ,  " " ,  
ym-1 are also given, with key(y0) _< key(yl) g 
• .- < key(y~_l); the problem is to put  the 
x's and y's together into the merged se- 
quence go, zl ,  . . .  , z,+,~-i, in such a way 
that  key(zo) _< key(z1) g . . -  < key(z,+~_l). 

He formulated the merging method as 
follows (based on a procedure then used 
with the IBM collator): Assume that  we 
have found the first l records Zo, . . . ,  
z~_l, where 0 _< l _< n + m; and assume 
further tha t  these l records consist of Xo, 

• • • , x,,_l and Yo, • • • , y~,,-1 in some order, 
where0_<  n' _< n, 0 < m' < m, a n d n ' - l -  
m ~ = l. There are four cases: 

(a) n' < n, m' < m. There are two sub- 
cases: 

(a l )  key(x,,)  _< key(y~,). Let  zz = xn,,  
and replace (l, n', m') by (l + 1, n' + 1, m'). 

(a2) key(x, ,)  > key(y~,). Let  zz = y~, ,  
and replace (/, n', m') by (l + 1, n', m' + 1). 

(l~) n' < n, m' = m. Same action as 
(al) .  

(~) n' = n, m' < m. Same action as 
(a2). 

(6) n' -- n, m' = m. The process has 
been completed. 

His program is divided up according to 
cases in this same way (sort of a "decision 
table"  arrangement).  In  order to make his 
coding reasonably easy to follow, it is trans- 
li terated here into a symbolic assembly 
language such as people might use with the 
machine if it existed today. We use the 
pseudo-operation a RST k (RST means 
"reserve short tank")  to mean that  symbol 

is to refer to the first of k consecutive short 
tank locations. The first RST in a program 
reserves short tank number 0, and short 
tanks are reserved consecutively thereafter• 
The other notations of our assembly lan- 
guage are more familiar: " E Q U "  denotes 
"equivalence",  "CO N "  denotes an integer 
constant, an asterisk denotes the current 
location, and "**"  denotes an address 
which will be filled in dynamically as the 
program runs. 

Von Neumann's  first step in coding the 
program was to consider the four-way divi- 
sion into cases; see (A). (Note: All numbers 
manipulated in the program are t reated as 
integers.) This code assumes tha t  the short 
tank locations have been set up appropri- 
ately; in particular, location S W I T C H  
contains a TRA instruction. The code in (A) 
(line 22) sets the address of tha t  TRA to 
either ALPHA, BETA,  GAMMA, or 
DELTA.  

Next comes the code for routines (a), (f~), 
(~), and (6); see (B). Here we have a rather  
awkward piece of coding; von Neumann 
thought  of a tr icky way to reduce cases (f~) 
and (~,) to case (a) by giving artificial 
values 0 and - 1  to key(y~,) - key(x,,) .  
But  he didn't  realize the far simpler approach 
of making (8) and (~) identical, respec- 
tively, to (a l )  and (a2). Thus, he could have 
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FIG. 1. T h e  or ig ina l  m a n u s c r i p t .  

simply changed line 27 to "SEL BETA, 
GAMMA", omitting lines 24, 25, 30, 31, 32, 
33, 34, 35 entirely, and then he could have 
used BETA and GAMMA instead of 
ALPHA1 and ALPHA2 in the remainder of 

the program. This would have saved four of 
the precious short tank locations, and it 
would have made the calculation slightly 
faster. Similarly line 36 is unnecessary, since 
location EXIT could be stored in LDELTA. 
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Line no. Location Op 

I NPRIME RST 
2 MPRIME RST 
$ XKEY RST 
4 YKEY RST 
5 N RST 
6 M RST 
7 LALPHA RST 
8 LBETA RST 
9 LGAMMA RST 

10 LDELTA RST 
11 SWITCH RST 
12 TEMP1 RST 
IS TEMP2 RST 
14 COMPARE SUB 
15 SEL 
16 STO 
17 SUB 
18 SEL 
19 STO 
20 SUB 
21 SEL 
22 STO 
~S JMP 

Address(es) Remarks 

1 n '  

1 m ~ 
1 key(x.,) 
1 key(y~,,) 
1 n 
1 m 
1 Location ALPHA 
1 Location BETA 
1 Location GAMMA 
1 Location DELTA 
1 Instruction TRA ** 
1 Temporary storage 
1 Temporary storage 
NPRIME,N A , - - n '  - n. 
LGAMMA, LALPHA A ~- i f  n '  ~ n t hen  GAMMA e l s e  ALPHA. 
TEMP1 TEMP1 *-- A. 
NPRIME,N A ~-- n '  - n. 
LDELTA, LBETA A ~-- i f  n ~ ~ n then  DELTA e l s e  BETA. 
TEMP2 TEMP2 ~-- A. 
MPRIME,M A (-- m' -- m. 
TEMP2,TEMP1 A ~- i f  m' ~ m then[TEMP2]eise[TEMP1]. 
SWITCH SWITCH ~-- TRA [A]. 
SWITCH 

(B) 

Lint no. Locat*on Op 

24 LALPHAI RST 
25 LALPHA2 RST 
$6 ALPHA SUB 
27 SEL 
28 STO 
29 JMP 
20 ZERO RST 
Sl MONE RST 
82 BETA SUB 
$8 TRA 
$4 GAMMA SUB 
S5 TRA 
$6 DELTA TRA 

Address(es) Rcmarhs 

1 Location ALPHA1 
1 Location ALPHA2 
YKEY,XKEY A ~-- key(y~,) -- key(x~,). 
LALPHA1,LALPHA2 i r a  _~ 0 t hen  ALPHA1 e l s e  ALPHA2. 
SWITCH 
SWITCH 
1 0 
1 --1 
ZERO, ZERO A *- 0. 
ALPHA+I  Go to AI P H A + I .  
MONE,ZERO A ~-- - I .  
ALPHA+I  Go co ALPHA+I .  
EXIT Merging is complete. 

A p p a r e n t l y  the  idea  of m a k i n g  e q u i v a l e n t  
p r o g r a m  s t a t e s  iden t i ca l  is no t  a n a t u r a l  con- 
cept ,  s ince even  yon  N e u m a n n  missed  i t  
he re .  

( I t  is pe rhaps  in b a d  t a s t e  to  make  such 
d e t a i l e d  cr i t ic i sm of the  p r o g r a m m i n g ,  s ince 
yon  N e u m a n n  was  n o t  i n t e n d i n g  to  wr i t e  
an  o p t i m u m  p r o g r a m  for  sor t ing ;  he was  
m e r e l y  expe r imen t ing  wi th  a t e n t a t i v e  o r d e r  
code.  E v e r y  g r e a t  m a t h e m a t i c i a n  has  a 
w a s t e b a s k e t  ful l  of t h ings  he d o e s n ' t  w a n t  

people  to  s t u d y  ca re fu l ly  ! On the  o t h e r  hand ,  
th i s  p a r t i c u l a r  m a n u s c r i p t  was  n o t  mere ly  a 
rough ske tch ,  i t  was  e v i d e n t l y  p u t  t o g e t h e r  
wi th  some care,  so i t  seems  fa i r  to  look closely 
a t  i t  in an  a t t e m p t  to  d i scern  which  aspec t s  
of p r o g r a m m i n g  were  mos t  diff icult  in t he i r  
concept ion .  T h e  idea  is no t  to  chor t le  over  
the  fac t  t h a t  yon  N e u m a n n ' s  p r o g r a m  i sn ' t  
perfect ;  i t  is r a t h e r  to  real ize t h a t  the  im- 
per fec t ions  give some his tor ica l  insights ,  
because  of when  the  p r o g r a m  was  wr i t t en . )  
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(C) 

Line no. Location Op Address(es) 

$7 XPTR RST 1 
38 YPTR RST 1 
39 ZPTR RST 1 
40 SIZE RST 1 
41 MOVEIN RST 1 
112 MOVEOUT RST 1 
]v5 RETURN RST 1 
44 ONE RST 1 
]~ BUFFER RST p + l  
$6 ALPHA1 SET MOVEIN, XPTR 
47 SET MOVEOUT, ZPTR 
68 PIK 1, RETURN 
$9 [ TRA BACK1 
5O JMP MOVEIN 
51 BACK1 ADD NPRIME, ONE 
52 STO NPRIME 
5S SET XKEY, BUFFER+p 
54 ADD XPTR,SIZE 
55 STO XPTR 
56 ADD ZPTR, SIZE 
57 STO ZPTR 
58 TRA COMPARE 

Remarks 

Location of x,, 
Location of y~, 
Location of z,,+m, 
P 
Instruction PIK p+I,BUFFER,** 
Instruction PUT p,BUFFER,** 
Instruction TRA BACK1 or BACK2 
1 
Place for record being transferred 
MOVEIN ~- PIK pT1,BUFFER,[XPTR] 
MOVEOUT *-- PUT p,BUFFER, [ZPTR]. 
RETURN *- TRA BACK1 
(This line "picked.") 
Execute three commands in short tank. 
A * - - - n ' + l .  
n ' * - - A .  
Update key(x.,). 
A *- [XPTR]+p. 
Update location of x~,. 
A ~-- [ZPTR]+p. 
Update location of z,,+m,. 
Return to COMPARE. 

The sorting program continues with the 
routine for case (a l ) :  In  (C) a block of 
p + 1 words (including the key for the next 
record) is t ransferred into short  tanks,  and 
p words are moved  into the z area. This is a 
good way to avoid the latency problems of 
delay-line memories, and it accounts for the 
considerable increase in speed in this pro- 
gram compared to what  was possible with the 
first EDVAC code. 

A slight improvement  could be made here 
if Z P T R  were omitted,  lett ing M O V E O U T  
keep t rack of tile current  z location; a short 
t ank  would be saved, as well as the instruc- 
t ion in line 47 (and a similar instruction for 
case ( ,2)) .  However  this tr ick would have 
made the setup somewhat  less symmetrical .  
Line 58 could have been omit ted  if the code 
for C O M P A R E  were placed right af ter  line 
57. I f  line 51 were changed to "SUB 
N P R I M E , M O N E " ,  another  short t ank  
could have  been saved. Since yon Neumann  
didn ' t  mention these simplifications, while 
his work on logic design strongly suggests 
tha t  he would have  thought  of them, it  is 
plausible to say tha t  he wasn ' t  especially 
concerned with saving space in short  tanks,  
although he does mention tha t  the scarcity of 

short tanks  places limits on the record size p. 
(He says tha t  p _< 8 would be required if 
there were only 32 short tanks,  while p < 40 
if there were 64; perhaps he was purposely 
wasting short  tanks, in order to  convince 
other people tha t  at least 64 short tanks  are 
desirable !) 

We need not discuss the code for (a2), 
since it is essentially the same as tha t  for 
(a l ) .  All tha t  is left, therefore, is to write an 
initialization routine tha t  gets everything 
s tar ted  properly. For  this purpose, yon 
Neumann  juggled the short tank  locations so 
tha t  the six which are set up from outside 
this routine (namely N, M, X P T R ,  Y P T R ,  
ZPTR,  SIZE)  come first; then  come two 
which are somewhat  special (namely X K E Y  
and Y K E Y ,  which must  contain key(x0) 
and key(y0)); then come 14 which are to be 
set to certain constant  values; and then 
come the remaining "sc ra tch"  locations. 
Figure 2 shows the resulting complete pro- 
gram, including the initialization of the 
short  tanks.  (At this point in his discussion, 
yon N e u m a n n  apparen t ly  forgot about  
T E M P 1  and T E M P 2 ;  Figure 2 assigns them 
to the buffer area.) 

Like nearly all programs, this one has a 
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N RST I 

M RST 1 

X P T R  RST 1 

YPTR RST 1 

ZPTR RST 1 

SIZE RST 1 

X K E Y  RST 1 

Y K E Y  RST 1 

NPRIME RST 1 

MPRIME RST 1 

LALPHA RST 1 

LBETA RST 1 

LGAMMA RST 1 

LDELTA RST 1 

SWITCH RST 1 

LALPHA1 RST 1 

LALPHA2 RST 1 

ZERO RST 1 

MONE RST 1 

ONE RST 1 

MOVEIN RST 1 

MOVEOUT RST 1 

R E T U R N  RST 1 

B U F F E R  RST p-}-I 

TEMPI EQU B U F F E R + I  

TEMP2 EQU BUFFER+2 

COMPARE SUB N P R I M E , N  e+27 

SEL LGAMMA,LALPHA e-F28 

STO TEMPI e-{-29 

SUB N P R I M E , N  e+30 

SEL L D E L T A , L B E T A  a+31 

STO TEMP2 e+32 

SUB MPRIME,M e+33 

SEL TEMP2,TEMP1 e-]-34 

STO SWITCH e+35 

JMP SWITCH e+36 

ALPHA SUB YKEY,XKEY e+43 

SEL LALPHAI,LALPHA2 e+44 

STO SWITCH e+45 

JMP SWITCH "e+46 

BETA SUB ZERO,ZERO e+39 

TRA A L P H A + I  e+40 

GAMMA SUB MONE,ZERO e+41 

TRA A L P H A + I  e+42 

DELTA TRA E X I T  e+81 

ALPHA1 SET M O V E I N , X P T R  e+47 

SET MOVEOUT,ZPTR e+48 

BACKI  

ALPIdLA2 

BACK2 

B R I N G  

M E R G E  

BACK3 

P I K  I , R E T U R N  6+49 
[ T R A  BACKI  ¢+50 

JMP MOVEIN e-i-51 

A D D  N P R I M E , O N E  e-t-56 

STO NPRIME e+57 

SET X K E Y , B U F F E R + p  e+58 

A D D  X P T R , S I Z E  e-i-59 

STO X P T R  a+60 

A D D  Z P T R , S I Z E  e+61 

STO ZPTR ¢~+62 

TRA COMPARE ~+63 

SET M O V E I N , Y P T R  e+6 t  

SET MOVEOUT,ZPTR e+65 

P I K  1 , R E T U R N  ~+66 

[ TRA BACK2 e+67 

JMP MOVEIN e-F68 

A D D  MPRIME,ONE ¢+73 

STO MPRIME e+74 

SET Y K E Y , B U F F E R + p  e-t-75 

A D D  YPTR,SIZE  e+76 

STO Y P T R  e+77 

A D D  ZPTR,SIZE  e+78 

STO Z P T R  e+79 

TRA COMPARE e+80 

EQU NPRIME 

P I K  3 , B R I N G  e÷O 

I 
P I K  I ,XKEY,**  e-{-I 

P I K  I ,YKEY,** e+2 

TRA BACK3 ~-F3 

SET B R I N G , X P T R  e+4 

SET B R I N G + I , Y P T R  e+5 

JMP B R I N G  e+6 

P I K  14,NPRIME e + l l  

I 
CON 0 e+12 

CON 0 e+13 

CON A L P H A  e+14 

CON BETA e+15 

CON GAMMA e+16 

CON DELTA e-}-17 

T R A  ** e+18 

CON ALPHA1 e+19 

CON ALPHA2 e+20 

CON 0 e-}-21 

CON --1 e+22 

P I K  p + I , B U F F E R , * *  e+23 

PUT p ,BUFFER,**  c+24 

_CON 1 e+25 

TRA COMPARE e+26 

FIG.  2 

bug: The second-last instruction "CON 1" 
actually belongs two lines earlier. If  von 
Neumann  had had an EDVAC on which to 
run this program, he would have discovered 
debugging i 

STORAGE ALLOCATION AND TIMING 

Although von Neumann  didn ' t  use a sym- 
bolic language to express his instructions, as 
done here, his notat ion wasn ' t  completely 
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numeric either. He used i l ,  21, " "  for short 
tanks NPRIME, MPRIME, etc. in the first 
piece of code, and later i s ,  ~2, "'" for the 
short tanks in the second, etc. Long tank 
locations were represented by unbarred 
numbers with subscripts; for example, lines 
32 and 33 in his notation were written as 
follows: 

"18) ~ - ~ ~) ~ o 
2~) 2~-+ ¢ 

and from here on like (a) with 0,0 for 
xn0, y0  .,, This was essentially a "regional" 
addressing technique, which was used by 
many programmers in the ensuing decade. 

After having written the program, he 
assigned actual addresses to the subscripted 
ones. In order to make the code reloeatable, 
for use as a general open subroutine, he 
assigned the addresses relative to an un- 
specified starting location e. His address 
assignments are shown in Figure 2 at the 
right of the instructions. 

He made an interesting and rather subtle 
error of judgment here, regarding latency 
time. Since the instruction in location 
ALPHA1-}-4 (line 50 of the program in the 
preceding section) jumps into the short 
tanks to execute three commands and 
transfer to BACK1, he didn't want BACK1 
to occupy location ALPHAI+5 since the 
long tank wouldn't be ready for that instruc- 
tion until at least 33 word times after 
ALPHAI+4.  So he intercalated 4 empty 
words between ALPHAI+4  and BACK1, 
"in order to avoid a delay of about one long 
tank." But since the instructions in 
MOVEIN and MOVEOUT make essen- 
tially random references to long tanks, an 
elementary argument can be given to prove 
that the average computation time which 
elapses between the execution of instruction 
ALPHAI+4  and the execution of instruc- 
tion BACK1 is 2p + 49.5 word times, com- 
pletely independent of the location of 
BACKli Therefore BACK1 should really 
have been placed so that its subsequent 
instructions are optimally located, i.e. so 
that the TRA COMPARE takes the least 
amount of time. Von Neumann inserted 
extra blank words into the initialization 
routine for the same fallacious reason. On 

the other hand his allocation of ALPHA, 
BETA, and GAMMA vis-a-vis each other 
and the COMPARE routine was correctly 
handled; the instruction in SWITCH is not 
a random memory reference, so his intuition 
didn't mislead him here. (ALPHA1 and 
ALPHA2 .were placed badly; this was ap- 
parently an oversight.) 

Von Neumann discussed the relocatability 
of this routine by enumerating the nine 
instructions which are variable (those whose 
codes depend on p, EXIT, or the relocation 
factor e). He didn't say exactly how these 
instructions were to be changed after they 
have been read in from tape; he apparently 
did not yet realize that the limited EDVAC 
code he had proposed (with no shift instruc- 
tions, for example) made it difficult to insert 
p into the " P I K "  and "PUT"  instructions, 
since the machine could only store into the 
address field of instruction words. 

It is perhaps significant that he thought of 
this program as an open subroutine, not 
closed, since he did not regard EXIT as a 
parameter on a par with n, m, location(x0), 
etc. 

He concludes his memorandum with an 
analysis of the running time, leading to a 
total time of 2.60 + (n + m)(p/16 + 2.61) 
msec. (His actual figure was 1.61 instead of 
2.61, due to a slip in arithmetic.) Some 
errors in the calculation of latency times, 
related to his misunderstanding cited above, 
make this analysis slightly invalid; the 
reader may verify that the actual running 
time (averaged over all possible placements 
of x0, y0, and z0 in the long tanks) is 3056 + 
(n + m)(64p + 4016) ~sec. If we incorporate 
all of the improvements to the coding that 
have been mentioned above, the average 
time decreases to 2576 + (n + m)(64p + 
2560) ~sec. 

THE SEQUEL 

After World War II came to an end, the 
original EDVAC group disbanded; Eckert 
and Mauehly remained in Philadelphia, to 
form their own company, while Goldstine 
and yon Neumann went to the Institute for 
Advanced Study in Princeton. The veil of 
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secrecy surrounding electronic computers 
was lifted when ENIAC was dedicated, and 
the great potential for high speed computing 
was gradually realized by more and more 
people. The principles of EDVAC's design 
were very strong influences on all of the 
computers constructed during the next 
decade (see [14]). 

After yon Neumann's first two versions of 
instruction codes had been digested by a 
number of people, other variations began 
to be proposed. In November 1945, Calvin 
N. Mooers devised a three-address code as 
an alternative to yon Neumann's idea; and 
in August 1946, he lectured at the Moore 
School about a further development, the 
use of flagged data for terminating loops [13, 
Vol. 4, lect. 39]. Another interesting three- 
address code, due to John Mauchly, was de- 
scribed by Eckert in the same series of lec- 
tures [13, Vol. 1, lect. 10]. Meanwhile yon 
Neumann had developed his ideas somewhat 
further; he and Goldstine, in collaboration 
with Arthur W. Burks, prepared a mono- 
graph which was to be the first widely cir- 
culated document about high speed com- 
puters, "Preliminary discussion of the logical 
design of an electronic computing instru- 
ment" [2]. By this time, their proposed ma- 
chine had already changed somewhat dras- 
tically: It was to have a random-access 
(iconoscope) memory of 4096 40-bit words. 
Instructions were 20 bits long, packed two 
to a word. The operation codes had a differ- 
ent flavor, too, resembling today's IBM 
7094: "Clear and add x", etc. Left and right 
shift operations were included for the first 
time. 

The EDVAC project itself continued at 
the Moore School until August 1949, when 
EDVAC was delivered to the BRL. In its 
final form, the EDVAC had a four-address 
instruction code (the fourth address specify- 
ing the location of the next instruction), de- 
vised by Samuel Lubkin. Its memory con- 
sisted of 128 long tanks, each containing 
eight 44-bit words, plus six one-word non- 
addressable short tanks, and an auxiliary 
drum. One of the only things that remained 
unchanged throughout most of its design 
was the basic clock rate of one ~sec per bit; 
the completed machine processed one word 

every 48 ~sec, leaving four "blank" bits be- 
tween words. Further development work on 
input/output devices was necessary before 
EDVAC became operational late in 1951; 
then it continued steady and inexpensive 
operation for many years, averaging, for 
example, 145 hours of useful work per week 
in 1961 [11]. It was finally retired from service 
in December 1962. 

For the story of yon Neumann's other 
pioneering contributions to computing, see 
Goldstine's recent account [6]. Goldstine and 
yon Neumann published three important 
supplements to [2] during the next years; 
these famous documents [7-9] formed the 
foundation for computer programming tech- 
niques, covering a wide range of topics from 
flowcharts to numerical analysis to reloeat- 
able loading routines. Reference [8, Sec. 11] 
deals with sorting and merging in consider- 
able detail; von Neumann here put the fin- 
ishing touches onto the work he had sketched 
in 1945. 
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