
Transputers-Past, Present, and Future

High-performance enhancements in transputers signal a trend toward general-purpose
computing. We present the progress, products, and results of ongoing work in transputer
development.

Co/in Wbitby-Strevens
A

Q

transputer transformation is under-
way. Exploiting the multiprocessing

lnmos Limited potential of the transputer, ESPRIT
projects continue to develop higher

performance, lower cost parallel processing
computers. In advancing the transputer toward
general-purpose computing, Inmos Limited is
also improving the transputer’s suitability in
embedded systems with the upcoming release
of new products.

The first transputer emerged at a time when
very large scale integration (VLSI) technology
permitted a combination of a small, fast pro-
cessor (20,000 transistors) and local memory and
communications facilities on silicon. At the same
time, the effective exploitation of VLSI techno-
ogy also resulted in the development of reduced
instruction-set computing (RISC) processors. Both
the transputer and conventional RISC proces-
sors reevaluate architecture trade-offs in the
context of VLSI capabilities. However, devel-
opers of the transputer created a design at the
instruction-set level to support multiprocessing
across a number of transputers and within a
single transputer without the overheads usu-
ally associated with complex runtime software.

In embedded systems, the transputer appli-

cation designer directly controls the transputer
hardware without the need for a resident oper-
ating system or runtime kernel. Applications for
transputers include office systems (fax,
videophones, laser printers, terminals), digital
telecommunications, military systems and hand-
held satellite navigation systems (see box on
sample applications), industrial control systems.
and music synthesizers.

Initial promotion of the transputer focused
on its use as a general-purpose component for
special-purpose systems. A number of applica-
tions-particularly in graphics and image
processing-clearly required high-performance,
floating-point operations. Inmos achieved this
capability very effectively by adding a floating-
point unit within the transputer chip (in con-
trast to the conventional. but more cumbersome,
coprocessor approach). This advancement
opened up the exciting prospect of construct-
ing parallel processing machines using arrays
of transputers to produce supercomputer-level
performance.

Applications requirements for simulation and
modeling (for example, quantum chromody-
namics and fluid-flow analysis) provided the
incentive to establish the ESPRIT Supernode

16 IEEE Micro 0272.1732/90/1200-0016$01.00 0 1990 IEEE

Two sample applications

The transputer‘s suitability to a wide range of embed-
ded systems is illustrated by considering applications at
both extremes. The first application-a handheld naviga-
tional system-uses just one transputer to address such
issues as high performance, low cost. and low power. The
second application-a long-range, three-dimensional rd-

dar system-uses up to 4,000 transputers to provide
supercomputer levels of performance. but in :I real-time
application.

Hand-held satellite navigation system
Some 18 satellites, in six orbits, operate as part of a

Global Positioning System, Each satellite continuously
transmits its position in an encoded form, and by listen-
ing to four satellites one can calculate the position (in
three dimensions) of the receiving station.

The traditional approach involves the use of complex
dedicated signal processing hardware. However, the Gypsy
hand-held receiver, developed by Columbus Positioning
Limited, performs the complex signal processing and
mathematics required in one transputer, which also ser-
vices a keyboard and controls a display (see Figure A).

A large, delreloping market for the system includes
marine navigation, transport control systems (reporting
delivery truck positions). and automotive applications
(dashboard navigation systems).

The advantages of the transputer-based solution over
the traditional approach include relatively fast acquisi-
tion time (which also saves battery power). the elimina-
tion of custom logic for signal processing. the minimal
amount of glue logic required. the lo= specification re-
quired on radio oscillators (transputer software performs
frequency compensation). and quick implementation of
future product changes.

Long-range radar system
The Martello long-range, three-dimensional radar sys-

tem under construction by Marconi Radar Systems uses up
to 4,000 transputers for signal processing of the radar re-
turns.’ The transputers combine to form a very fast parallel
computer that accepts digitized radar returns at its input
and defines the range, bearing, and height of every target
at its output. (Some environmental information is also added
to the output.) The processing load amounts to roughly
three billion operations per second through each radar
channel.

The alternative to transputers-hardnriring-is inherently
expensive (previous Martello systems used about 50 dif-

Figure A. Gypsy hand-held receiver.

ferent board types). With radar technology now moving
so fast, harcl\viring IS doul~ly expensive because boards
are quickly rendered out of date. By contrast, in the
transputer system. sof&2re performs the entire signal pro-
ccssing task, and the same basic computer remains usable
throughout a \vholc generation of racla~-s.

The signal processing algorithms take place in Ireal-time
by using pipeline parallelism to spread the parts of the
algorithms across an al-~-a). L\ ith computation overlapping
communications (see Figure I3 on the next p;ige). Simula-
tion devised the optimum map. making it necessav to
build only a sn~all part of an array to prove the concept. In
an array node of 50 transputers. housekeeping uses two
transputers, while the rest are a\2ilable for data processing.

December 1990 17

Transputers

Two sample applications
cor2tinuedfkm p. 17

HDLC Dual
Digitized Radar Processed Monitor Timing Timing serial Ethernet

video control video video in out interface interface

t t t t t t t
Master +
control

unit
Control

Interface Video Waveform and Control
buffer generator status processor

interface

tf t t t tt

Node

I I Radar Extracted

Typical
application
interface

57400 array in a
typical application
as a radar signal

Figure B. Diagram of Martello radar system architecture.

Geometric parallelism achieves the processing rate The vast number of processors in the Martello com-
required for the Martello radar. The radar coverage breaks puter areIS-bit T222 transputers, with some 32-bit T425
into range bands, and a particular array node directs all transputers. A follow-on project proposes to constntct a
samples from a given band. Each array node executes multifunctional radar for the Italian navy using floating-
an identical program, but on different data. The scalable point transputers. However, no fundamental change to
performance of the radar is proportional to the number the architecture is necessary to take advantage of new
of array nodes. generations of transputers.

project (see ESIWT Supernode box). This project led to the
development of many new commercial hardware and soft-
ware products, including the Inmos T800 transputer, the
Parsys Supernode machine, the Telmat T-node machine,
and the N.A. Software Limited’s parallel processing librar-
ies for Fortran numerical routines. More significantly, the

project contributed greatly in establishing the need for
reconfigurable systems and in creating paradigms for par-
allel programming.

The personal workstation also opened up another mar-
ket for the transputer, since it provides the basis for work-
station accelerators. More than 50 companies now market

18 IEEE Micro

The ESPRIT Supernode Project

Over about a four-year period (Dec. 1985-Nov. 19891,
the Supernode Project aimed to create a low-cost, high-
performance computer system from transputers. This
project incorporated the development of the T800
floating-point transputer’ and the Supernode RTP
(Reconfigurable Transputer Processor).

One Supernode consists of 16 transputers connected
via a crossbar switch (also developed during the project).
Using crossbar switches, multiple Supernodes combine
to provide systems of up to about 1,000 transputers with
no limitations on topology (except those implied by the
four links on each transputer). Constructing larger sys-
tems remains possible with minor constraints on topology.

The wide range of applications demonstrated on the
Supemode included finite-element analysis, logic simu-
lation, luminosity simulation, and real-time image analy-
sis. Development of parallel algorithms and parallel
numerical libraries also occurred.

The main results demonstrated the feasibility of the
system, and the surprising ease in programming appli-
cations to take advantage of concurrency. A large num-
ber of European research projects base their development
of parallel computing techniques on the now commer-
cially exploited Supernode.

accelerator cards, offering a range of hardware and soft-
ware capabilities. Initially these cards targeted the develop-
ing transputer embedded systems market. However, as
application software for the transputer grew, the market-
place widened-first to engineering design workstations and
more recently to commercial and financial workstations.
Several workstations based entirely on transputers are now
available.

ESPRIT projects continue to attack the difficult problems
of providing very high performance systems (see box for
current projects). The original issues concerned the feasibil-
ity of constructing such systems (possibly containing thou-
sands of processors) and determining the methods of
programming individual applications. The Supemode project
developed a machine that could effectively execute a wide
range of applications, and in many cases nearly achieved
the theoretical maximum performance from the machine.

Current ESPRIT project issues involve “scalability,” “port-
ability,” and programming ease. Scalability refers to the ease
of achieving increased performance from an application by
using more processors. Portability relates to the ease of
transferring programs between parallel machines of differ-
ent architectures, The term “general-purpose” summarizes
these issues of parallel computing. A general-purpose par-

Current ESPRIT projects

The Supernode 2 project studies software issues-
particularly those concerned with advanced operating
systems-in the context of the Supemode machine. Such
an operating system converts the machine from one that
runs one application into a more general-purpose facility.

The two-year PUMA (Parallel Universal Message-
passing Architecture) project explores the possibilities
offered by the new virtual communications architecture
(see the “The next-generation transputer” section in the
main article). Besides studying the performance offered
by various topologies and the implications for computer
architecture, the project examines high-level models of
parallelism and their implementation using a virtual
message-passing system.

The three-year GPMIMD (General Purpose, Multiple-
Instruction, Multiple-Data) project aims to develop a
standard European MIMD architecture based on Hl
transputers and virtual communications. Four main Eu-

ropean transputer-supercomputer manufacturers-
Meiko, Parsys, Parsytec, and Telmat--currently work as
key collaborators on the project, which is led by Inmos.

The OMI MAP (Open Microsystems Initiative Micro-
processor Architecture Project) forms the core of the
European-led Open Microsystems Initiative. It aims to
define the architecture of a new microprocessor family
designed to exploit the VLSI capabilities anticipated in
the latter half of the 1990s. Collaborators include Bull,
Inmos, Olivetti, Siemens, and Thomson.

Several other projects exploit the transputer architec-
ture for specific application areas. For example, Padmavati
(Parallel Associative Development Machine as a Vehicle
for Artificial Intelligence) uses transputers and associa-
tive memory for symbolic processing.

allel computer executes a range of applications without
concern for the number of processors employed or the to-
pology in which they are connected. Indeed, whether the
underlying hardware architecture is based on message passing
(such as transputer-based and hypercube-style systems) or
shared memory (such as Sequent’s Balance system or Cedar
systems) is of no concern to the programmer.

The expertise derived from ESPRIT and Supemode projects
continues to spin off other applications. Migration of pro-
cessing techniques and applications from general-purpose
computers into special-purpose systems signifies a definite
computing trend. For example, high-performance laser printers
incorporating Postscript processing and intelligent terminals

continued on p. 76

December 1990 19

TransDuters

Transputers
cont inuedfmmp. 19

supporting windowing systems enjoy increasing popularity.
In both cases, the workstation formerly carried out the corre-
sponding processing. Similarly, one expects techniques for
high-performance systems developed on machines such
as Supernode to migrate into next-generation embedded
systems.

Transputer architecture
The development of transputer architecture involved four

main objectives:

l it created a commercial product range that set new
standards in ease of programming and engineering;

l it provided max imum performance to the user;
l it allowed the exploitation of future developments in

VLSI technology within a compatible family; and
l it created a programmable component for building

systems with large numbers of concurrent computing
components.

A transputer contains a processor. memory, and a num-
ber of standard point-to-point communicat ions links-all
integrated into one silicon chip (as shown in Figure 1). An
external memory interface extends the on-chip memory. ‘When
appropriate, transputers also incorporate special-purpose
processing and/or interfacing capabilities. Separating the
external memory interface (for local memory) from the
communicat ions optimizes performance and minimizes
contention

11 Processor

Link in
Link out

Applications/external memory interface

Figure 1. Processing and interfaces in transputer
architecture.

A system is constructed from one or more transputers
operating concurrently and communicat ing through stan-
dard links. The programming language Occam (see box)
formalizes the computational model. Occam describes a
system as a collection of processes and communicat ions
that operate concurrently and communicate through channels.

Transputer processing
The transputer directly implements the Occam model of

concurrency. A hardware scheduler allows any number of
Occam processes to share a single processor, and transputer
instructions implement Occam message passing. An appli-
cation designer can configure a collection of processes ready
for execution on a network of transputers. Each transputer
executes a component process and transputer links imple-
ment Occam channels.

Roth internal and external communicat ions use the same
instructions, allowing for Occam program reconfiguration
(such as using a different processes-to-processors alloca-
tion) without recompilation. In particular, an application
designer can configure an Occam program to execute on a
small number of transputers for low cost or on a larger
number of transputers for high performance.

The transputer processor supports fast interrupt response
by providing two levels of priority. (Typically, the interrupt
response is less than 1 microsecond on a 20-MHz clock
transputer; worst case, it is less than 4 microseconds). Using
the ALT construct (a key word in Occam meaning alterna-
tive), a high priority process waits for the first of several
inputs to become ready. It then executes the specific piece
of code to respond to the particular interrupt.

The processor treats access to a timer as an input. In a
delayed input, the process waits until the timer reaches an
appropriate value. The processor supports an arbitrary number
of timer inputs. A programmer can also use a timer input
within an ALT construct as a time-out on a communication.

Developing the transputer instruction set involved five
design objectives:

l to implement Occam effectively, so that high-level lan-
guage usage results in the effective use of silicon capa-
bility, and that highly concurrent programs execute with
minimum overheads;

l to implement Occam simply and directly to faciliate easy,
straightfonvard program compilation, and to ensure that
lower level programming is unnecessary;

l to provide word-length independence, so that a pro-
gram executes using processors of different word lengths
without recompilation;

l to provide position independence, so that programs and
workspaces are allocated anywhere in memory after
recompilation; and

cont inued on p. 78

76 IEEE Micro

Basic Occam concepts

The Occam language’ programs concurrent, distributed
systems. The word distributed emphasizes the unsuitabil-
ity of previous languages in this area. Occam describes a
system as a collection of concurrent processes that com-
municate with each other and with peripheral devices
through channels. Concurrent processes do not communi-
cate via shared variables; thus Occam is particularly suit-
able for programming systems with no memory sharing
between processors.

Occam provides three primitive processes:

u:= e Assign expression e to variable LJ
c! e Output expression e to channel c
c? u Input from channel c to variable u

Occam provides constructs that combine primitive
processes:

SEQ

PAR

ALT

Components execute one after
another (sequential)
Components execute together
(parallel)
First ready component executes
(alternative)

implements as a loop and is equivalent to

SEQ
a[basel
a[hdse + 11
.,
albase + count - 11

:= base
:= base + 1

:= base + count - 1

Replication used with PAR provides arrays of similar
processes. AL?‘ and IF can also be replicated.

Using a construct as a component in another con-
struct makes it possible to design a system as a set of
nested processes (for example, by using PAR within
PAR as shown in Figure C). The messages input and
output on the channels of a process fully specify the
process, and this completely hides its internal structure
from the outside world.

Internally, the programmer can structure the process
itself as a set of nested processes. At any level of design.
the designer works with a small and manageable set of
processes.

The language also provides IF and WHILE constructs.
A construct is itself a process and it may be used as

a component of another construct. Occam syntax uses
indentation to indicate program structure.

A programmer writes parallel programs by using
channels, inputs, and outputs combined in parallel and
alternative constructs. Each Occam channel provides a
communication path between two processes. Commu-
nication is synchronized and takes place when both
the inputting and the outputting processes are ready.
Data to be communicated is copied from the outputting
process to the inputting process, and both processes
continue.

An AL?‘ process waits for input from any one of a
number of channels. ALT takes input from the first to
be used for output by another process.

Occam provides a replicated constructor. For example

SEQ i = base FOR count
a[il := i Figure C. Design of nested Occam language processes.

December 1990 77

Transputers

I
l to pl-ovide lo\\.-latency response to communications with

external devices.

The resulting design’ uses a simple linear address space.
I
~

six functional registers for sequential programming (see Fig-
ure 2), and additional registers as qiwue pointers to support
concurrency.

, Regrrs , (Locals (1 Program /

Ic1 I I
Workspace

Next instruction L
Ooerand

Figure 2. Function of transputer registers for sequential
programming.

The six registers for sequential programming are the

l Lvorkspace pointer that points to a storage area contain-
ing local variables.

l instruction pointer that points I0 the next instruction to
lx executed.

l operand register used to form instnlcrion operands, and
l A, I3, and C registers that form an evaluation stack. This

stack holds the operands and intermediate results for
expression e~luation.

The hardware scheduler allows for the combined execu-
tion of any number of processes through the sharing of pro-
cessor time. AT any time. a concurrent process is active (either
currently executing or on a list awaiting execution) or inac-
tive (either ready to input. ready to output. or waiting until a
specified time).

A list holds active processes awaiting execution. This linked
list of process workspaces uses tno registers in implemen?d-
tion--one that points to the first process on the list and one
that points to the last process. The hardware scheduler main-
tains ho such liats+)ne for high-priority processes, the other
for low-priority processes.

The implementation of the instrucrion set uses a single
level of microcode. Many instruclions execute in one cycle
(50 ns on a X-MHz transputer); many of the rest execute in
two cycles. Some complex functions (such as block move)
take an arbitrary number of cycles. These instructions still
provide higher perfoi-mance than possible with software.

To limit the latency figure for switching between low and
high priority, t ime-consuming instructions allow a switch
during execution. Consequently, the processor never takes

more than 4 microseconds to switch between low priority
and high priority.

A context switch het\veen processes executing at low pri-
ority occurs only when the evaluation stack contains no use-

ful contents. With minimal need to save and restore registers,
the processor implements concurrency very efficiently.

The instruction format uses very compact encoding based
on l-byte instructions. Prefixing instructions are used to form
long operands. The instruction size is independent of the
word length. In general, a program requires much less slor-
age to hold it than an equivalent program in a conventional
or RISC microprocessor. Since a program requires less star-
age to represent it. fetching instructions use less memory
bandwidth. As the transputer accesses memory one word at
a time, the processor receives several instructions for every
fetch (depending upon the number of bytes in a word).

In addition to Occam, high-performance compilers for C,
Fortran, Pascal. and Ada have been implemented for the
transputer.

Transputer communications
A link between two transputers implement? a pair of Occam

channels, one in each direction. Two one-directional signal
lines connect a link interface on one transputer to a link
interface on the other transputer. Each signal line carries data
and control information.

Communication through a link involv-es a simple protocol,
which supports the synchronized communicarion of Occam.
The protocol provides for the transmission of an arbitrary
sequence of bytes, which allows trdnsputers of different \vorcl
lengths to communicate.

Each byte transmits as a start bit. fohWed by a one bit. 8
data hits, and a stop bit (see Figure 3a). After transmitting a
data byte, the sender waits until receiving an acknowledgment.
which consists of a start bit followed by a zero bit (see Figure
3b). The acknowledgment signifies both that a process re-
ceived rhe acknowledged byte. and that the receiving link is
ready to receive another byte. The sending process proceeds
only after receiving acknowledgment for the final byte.

Data bytes and acknowledgments multiplex down each
signal line. An acknowledgment transmits as soon as recep-

1 1 Data 0
I I I I I I I

(4

04

Figure 3. Formats of data links (a) and acknowledgment (b).

78 IEEE Micro

tion of a data byte begins (provided a process is waiting for
it and room to buffer another data byte is available). Conse-
quently, transmission may continue without delays between
data bytes.

As the transputer uses transistor-transistor-logic-compatible
(‘ITL) signals, the applications engineer can extend the links
by inserting industry-standard line drivers and receivers.

The design of the links makes engineering of transputer
systems easy. Irrespective of internal performance, all trans-
puters use a i-MHz clock for frequency reference. The low
frequency simplifies the clock distribution in large transputer
systems. The communications system does not require a phase
reference. Therefore, it is not necessary for all transputers to
operate on the same clock. The flexibility to use a number of
clocks enables interworking between independently designed
(sub)systems.

The use of point-to-point serial communications, instead
of buses, offers the following advantages:

l simplified board layout and backplane design;
l increased communications bandwidth, as many links in

a system operate concurrently; and
l easy interconnection of devices with different word

lengths and performance.

Transputers with different word lengths and performance
all interwork together, ensuring the easy upgrading of sys-
tems as the technology advances. It is not necessary to
downgrade a connected set of components to the perfor-
mance of the slowest component!

Each transputer contains a separate communications en-
gine, allowing communications to proceed in parallel with
the execution of processor instructions. Indeed. many appli-
cations completely overlap communications and processing,
maximizing overall system throughput.

Two link adapters and a link switch add to the flexibility
and use of communications. The link adapters provide an
interface between a link and a byte-wide port. The Inmos
COO4 link switch provides a crossbar switch between 32 links,
controlled by a separate configuration link. The COO4 is
cascddable, allowing for the construction of arbitrary networks
of transputers (limited only by the number of links on each
transputer; most transputers contain four links).

Programming paradigms
While designing transputer-based hardware to perform at

any desired level of performance is easy, one must ensure
that the software configuration exploits the hardware archi-
tecture. Software structured as a sequential program with
conventional compilation operates no hster on 10 transputers
than on one!

For embedded systems, the design of software architec-
ture and hardware architecture optimally occurs hand-in-hand,

resulting in essentially a system design activity.’
To configure a program for a network of transputers, the

applications designer identifies the parallelism. The designer
subsequently maps the parallel processes onto the transputer
network to optimize the system according to the design crite-
ria (such as maximized performance and minimized latency).

Experience gained to date with parallel systems-particu-
larly with ESPRIT projects-identified a number of program-
ming paradigms that help to structure systems designs.” These
paradigms can be written in languages such as Ada,‘ or can
employ parallel extensions or libraries in C or Fortran. How-
ever, Occamj describes these paradigms most conveniently.

Descriptions of the paradigms for algorithmic parallelism.
geometric parallelism, and farming appear below:

1) Algorithmicparallelism. The designer splits the applica-
tion into functional units. In simple cases. these units
can form a pipeline; in general, they can form more
complex structures such as feedback loops. The various
stages potentially operate in parallel. With a modest
amount of buffering, the communication of data or par-
tially computed results between stages will, in many cases,
completely overlap processing (eliminating communi-
cations overhead). The structure maps onto one or more
transputers, up to the number of components in the
structure, with the communications performed internally
or via transputer links, as appropriate. For a pipe-
line structure, its slowest stage limits the maximum
performance.

2) Geometricparallelism. Designers partition the design on
a regular baSiS. For example, they can divide a screen
image into quadrants, or a matrix operation into
submatrices. A separate process performs the computa-
tion for each partition. The processes often operate in-
dependently or interact only with immediate neighbors.
A particularly beneficial use of geometric parallelism in-
volves scaling up the size of a problem to be solved
(such as performing weather forecasting on a finer mesh).

Designers usually implement geometric parallelism by
allocating processes straightforwardly onto a physical
regular network. Geometric parallelism usually attains
maximum performance by considering granularity issues.
The processes communicate very efficiently with their
immediate neighbors when executing on the same pro-
cessor. The processes communicate less efficiently with
immediate neighbors when executing on separate pro-
cessors. Where one process is allocated to each proces-
sor (see Figure 4a on the next page). communication
costs dominate performance in most instances. With all
processes on a single processor, computation time
dominates performance.

Computation and communication achieve balance at
an intermediate level of granularity (see Figure 4b). This

December 1990 79

(4 W

IJ Processor 0 Process - Occam channel

Figure 4. A simple allocation of geometric parallelism
granularity (a); a balanced allocation of geometric
parallelism (b).

balance results from ;I boundary-to-area effect (for two
dimensional gritls) in \vhich the amount of communica-
tion at the boundary varies linearly with tk grain size.
ancl the area of computation varies as the square of the
grain size. In comparing the two figures. the boundary
to-are3 effect in Figure 4b results in four t imes the amount
of computation, but only twice the communication 3s
found in l?gwe 421. A similar sur~dce-to-voluime effect
occurs for three-diinension~~l grids.

3) F6Wn7ilg. Designers &vi& the application into small,
similar pieces (for example, when needecl to process a
large number of similar data items). Each transputer in a
net\vork provides :I server process. and a master pro-
cess allocates (or “farms out”) work to the servers as
they become free. Farming provides two major benefits.
First, it automatically balances the load--a server corn-
pleting one piece of work immecliately proceeds to the
next. Second, it functions relatively independent of the
topology--any reasonably linked nemork works well.
The limit to performance is the rate of dispensing work
and handling results.

The Ocam model of par:&zlism offers a significant hen-
cfit: Messages sent and received completely &fine a process.
The designer can structure ;1 process internally as a set of
processes. thereby using any clesired level of nesting. A very
powerful technique, therefore, combines the above paradigms
in one application, such as a farm of geometric-array servers
functioning with pipeline components. (The earlier Occam
box diagrams the Occam program that encapsulates all three
paradigms within a simple top-level structure.)

The designer can use these models to easily structure ap-
plications tc) define a large amount of par:tllelism. The nar-

80 IEEE Micro

ro\v and easily defined interface specifications allow for easy
reasoning about an application’s correctness.

The next-generation transputer
For the past two years. a team at Inmos’s bistol, Engjand.

design center has heen working to enhance the tmnsputer‘s
performance and suitability for emheddcd systems. From this
work, a new product family-based around a new processor
code-named Hl-will be launchecl in Spring 1991.”

The team‘s design goal called for establishing a new stan-
dard in single-processor performance while enhancing the
trdnsputer family‘s position as the premier multiprocessing
microprocessor. It also required maintaining upwartl coin-
patihility with existing transputer products.

To meet these goals, the team developed a new micro-
architecture that implements the same instruction set as the
existing Inmos T8Oi transputer. The Hl provides an order-
of-magnitude increase in performance, combined with en-
hdncecl capabilities to support the sofbxire standards emerging
in the enibedclecl systems marketplace.

The HI architecture includes such key features as a
pipelined. superscalar processor combined with on-chip cache
RAM. and improved communications that provide a new
degree of freedom in multiprocessor programming.

To complement the HI transputer. Inmos is now design-
ing a range of network communication products based on a
new lOO-Mbit/s link protocol. The protocol supports the dy-
namic routing of messages between processors.

Hl performance
The Hl provides a peak performance in excess of 150

MIPS (million instructions per second) ancl 20 Mflops (mil-
lion floating-point operations per second) and ;L sustained
performance exceeding 60 MIPS and 10 Mflops. It maintains
instruction-set compatibility \\;ith the T8Oi.

A number of design features contribute to the achieve-
ment of these performance levels. The processor itself uses a
pipelined. superscalar architecture, \vhich executes up to eight
instructions on each clock cycle and operates at 3 clock speed
of 50 MHz. The number of cycles required to execute many
instructions-such as integer and floating-point multiply, and
logical shift--decreases significantly.

I:nlike other superscalar machines, the Hl architecture does
not require an advancecl compiler to schedule the different
fWKtiOnal units in the processor. Hardware controls the flow
of multiple instructions through the pipeline. It is not neces-
sary to modify existing compilers or recompile source code.

An advanced suhmicron, CMOS (complementary metal-
oxide semicontluctor) process allows a high transistor count
and high clock frequency operations. This process enables
the implementation of a sophisticated processor and pro-
vides 16 Kbytes of on-chip cache memory.

The move to a cached architecture is 3 radical develop-

ment. The 16.Kbyte cache is sufficiently large to achieve high In contrast. hut in keeping with its intended market, addi-
hit rates for most applications. The HI still allows for directly tional Hl transputer enhancements allow programmers to
addressed. on-chip RAM for applications containing only SlTldll write more efficient real-time kernels. These enhancements
amounts of memory. or ones intolerant of indeterminate access and control the state of the machine, the process and
performance c;iiised hy cache-line misses. timer queues, and time slicing and interruptdhility mechanisms.

The design team took great care to ensure that the Hl
transputer \vill provide high performance levels in low-com-
ponent-count systems. For example, the Hl will provide a
programmable memory interface with a @bit data bus sus-
taining high data transfer rates for cache-line refill. The inter-
face supports four independent banks of external memory,
and the timing for each hank is configured independently
from software. For example. an application designer can
choose to fill two hanks with dynamic RAM-one bank with
virtual RAM, the other with peripherals. Such a system fre-
quently requires no external support logic.

New freedom

Hl error-handling and user-mode processes
The Hl transputer hardware supports the same scheduling

algorithms used by current-generation transputers. such as
the T80i. In addition. on the 111 transputer each process may
use ;I second process (known as a trap handler). When an
error-such as an integer overflolv or ;I tloating-point er-
ro--occurs. control transfers to the trap handler. The trap
handler copes with the error in soft\vdl-e in all cases before it
(in most instances) returns control to the process in which
the error occurred.

A limitation in exploiting existing tuansputer nemorks is
the need to match the parallel structure of the algorithms
used to the interconnectivity provided. In the worst case, a
specific machine possesses a fixed topology. In the best case
(21 totally reconfigurahle architecture sucl~ as the Supernode).
the limitation of four links per transputer restricts mapping.
This limitation can result in poor software portability.
nonoptimum design, and scalahili~ prohlcms.

The Hl product family largely eliminates this problem h)
providing hard\~are to allow transputer connections via a
low-latency communication network. It supports communiG
cation channels l,et\veen any two processes anywhere in the
nemork.

The Hl also supports a separate user mode. This mode
prevents privileged instructions (including communications
and scheduling instructions) from executing. It checks and
translates all memory accesses from 3 logical to the physical
address space.

The hard\\are simplifies programming hecause designers
do not need to consider how to allocate processes to the
transputer network until after completion of the program
lvriting. They can USC different allocations on different ma-
chines and they can change the allocation to optimize per-
formance. In addition. it is possible-at least in principle-to
let the compiler make this allocation. effecti\.ely removing all
configuration tlet& from the program I’ountain” discusses the
coiniii~lnications capabilities of the 111 product fdmily in

greater detail. ‘I’he following paragraphs sum up thrse
capabilities.

The Hl transputer itself contains a separate communica-
tions processor, which multiplexes a large number of logical
communication links (virtual links) along each of its physical
links. Each virtual link supports one Occam channel in each
direction.

H 1 transputer enhancements

allow programmers to write

more efficient real- time kernels.

Memory protection and address-translation mechanisms
specifically support secure programming and &hugging in
embedded systems. For dedicated (single-user) systems. the
protection aids the detection of programming errors. For
multiuser. genera-purpose computing systems, it protects
users and the operating system from erroneous programs.

The protection and translation mechanisms are optimized
for the requirements of embedded systems. These mecha-
nisms allow the processor to execute code in protected (user)
mode at the same speed 21s normal processes without the
performance overhead involved in supporting page-based.
virtual memory.

The communications processor transmits messages as a
sequence of packets. \vhich all contain 32 bytes of data ex-
cept the last packet. Each message packet starb with ;I header,
bvhich routes the packet through the communication net-
work and identifies the destination virtual link on the remote
transputer.

Designers construct a separate communications nehvork
using the Inmos Cl04 routing device and can use one Cl04
to connect small numbers of Hl transputers. In larger systems.
designers can use Cl04 connections to form a hypercuhe, a
mllltidilnensional grid. or a tree network.

Each Cl04 provides 32 bidirectional links. The header of
each packet arriving on a link input determines the link on
which to output the packet. As soon as the link output is
free. the whole packet transmits through it.

An algorithm known as interval labeling decides through
which link to send a packet. In intenlal labeling. each output

December 1990 81

Transmters

link is associated with a continuous set of header values (an
interval). The header of an incoming packet lies within only
one range. and the packet transmits to the associated link.
Optimum, deadlock-free labeling schemes exist for each of
the common network topologies.

The Cl04 provides additional facilities to connect networks
together and reduce the impact of message congestion on
worst-case latency and bandwidth in heavily loaded networks.

THE TRANSI’UlER IS WELL ESTABLISHED as a highly cost-
effective processor, particularly in embedded applications. It
provides unique advantages for applications that require more
than one processor, and serves as the basis for many research
programs in parallel computing.

Inmos developed the current generation of transputers as
general-purpose components for special-purpose machines.
The introduction of a higher performance transputcr-sup-
porting virtual communications, memory protection, and other
advances-represents a significant step toward the develop-
ment of general-purpose, multiprocessing computing systems.
Research continues on the architecture to effectively exploit
the full capabilities of VLSI technology during the 1990s.
Meanwhile, the HI provides highly efficient implementations
of conventional operating systems and real-time kernels. It
greatly reduces the cost of porting existing software and up-
grading existing applications to take advantage of the
trdnsputer’s capabilities. /JJ

References
1.

2.

3.

4.

5.

6

7.

8.

9.

82

A. Baker, “A Signal Achievement,” Parallelogram Infemat/ona/,
Vol. 2, No. 29, Aug. 1990, pp. 1 O-1 1.
M. Homewood et al., “The IMS T800 Transputer,” /EEf Macro,
Vol. 7, No. 5, Oct. 1987, pp. 1 O-26.
lnmos Limited, Occam 2 Reference Manual, Prentice-Hall,
London, 1988.
lnmos Llmited, Transputer instruction Set-A Compiler Writer’s
Guide, Prentice-Hall, 1988.
lnmos Llmited, Communicating Process Architecture, Prentice-
Hall, 1988
A.J.G. Hey, D.J Pritchard, and C. Whltby-Strevens, “Multlpara-
digm Parallel Programming,” froc. Hawalr ht’l Conf. SyIrem
Sciences, IEEE, New York, 1989, pp. 716-725.
J Barnesand C Whltby-Strevens, “High Performance Ada Using
Transputers,” Defense Computing, Vol. 1, No. 5, Sept./Ott.
1988, pp. 45-49.
C Dyson, “lnmos HI Architecture Revealed,” New Electron&
Vol. 23, No. 8, Sept. 1990, pp. 2 I-24.
D. Pountain, “Virtual Channels The Next Generation of
Transputers,” Bfle(European and World Edition), Vol. 15, No. 4,
Apr. 1990, pp. 3-12.

Colin Whitby-Strevens manages the
Central Technology Group in the Micro-
processor Design Division of Inmos Lim-
ited. His interests include microprocessor
architecture, parallel programming and
system design, and programming lan-
@ldgeS.

He recently chaired a series of Commission of European
Countries workshops-involving more than 70 companies
and organizations-to establish the Open Microsystems Ini-
tiative. Prior to joining Inmos, he was a lecturer in computer
science at the University of Warwick, where he developed a
multiprocessor operating system for the Modular One com-
puter. He subsequently established the Warwick Distributed
Computing Research Project, which developed some of the
key concepts subsequently exploited in the Inmos transputer
architecture.

Whitby-Strevens holds a BSc degree in mathematics from
Hull University, and the Diploma in computer science and
PhD from Cambridge University.

IIe authored 30 technical papers and coauthored BCPL-
no Language and Its Compiler. He is an affiliate of the IEEE
Computer Society, a member of the Association of Comput-
ing Machinery, and an associate member of the Rritish Corn-
puter Society.

Address questions concerning this article to Colin Whitby-
Strevens, Inmos Limited. 1000, Aztec West, Almondsbury,
Bristol, IS12 4SQ, United Kingdom.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

Low 156 Medium 157 High 1%’

IEEE Micro

