
Transputers-Past, Present, and Future 

High-performance enhancements in transputers signal a trend toward general-purpose 
computing. We present the progress, products, and results of ongoing work in transputer 
development. 
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transputer transformation is under- 
way. Exploiting the multiprocessing 

lnmos Limited potential of the transputer, ESPRIT 
projects continue to develop higher 

performance, lower cost parallel processing 
computers. In advancing the transputer toward 
general-purpose computing, Inmos Limited is 
also improving the transputer’s suitability in 
embedded systems with the upcoming release 
of new products. 

The first transputer emerged at a time when 
very large scale integration (VLSI) technology 
permitted a combination of a small, fast pro- 
cessor (20,000 transistors) and local memory and 
communications facilities on silicon. At the same 
time, the effective exploitation of VLSI techno- 
ogy also resulted in the development of reduced 
instruction-set computing (RISC) processors. Both 
the transputer and conventional RISC proces- 
sors reevaluate architecture trade-offs in the 
context of VLSI capabilities. However, devel- 
opers of the transputer created a design at the 
instruction-set level to support multiprocessing 
across a number of transputers and within a 
single transputer without the overheads usu- 
ally associated with complex runtime software. 

In embedded systems, the transputer appli- 

cation designer directly controls the transputer 
hardware without the need for a resident oper- 
ating system or runtime kernel. Applications for 
transputers include office systems (fax, 
videophones, laser printers, terminals), digital 
telecommunications, military systems and hand- 
held satellite navigation systems (see box on 
sample applications), industrial control systems. 
and music synthesizers. 

Initial promotion of the transputer focused 
on its use as a general-purpose component for 
special-purpose systems. A number of applica- 
tions-particularly in graphics and image 
processing-clearly required high-performance, 
floating-point operations. Inmos achieved this 
capability very effectively by adding a floating- 
point unit within the transputer chip (in con- 
trast to the conventional. but more cumbersome, 
coprocessor approach). This advancement 
opened up the exciting prospect of construct- 
ing parallel processing machines using arrays 
of transputers to produce supercomputer-level 
performance. 

Applications requirements for simulation and 
modeling (for example, quantum chromody- 
namics and fluid-flow analysis) provided the 
incentive to establish the ESPRIT Supernode 
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Two sample applications 

The transputer‘s suitability to a wide range of embed- 
ded systems is illustrated by considering applications at 
both extremes. The first application-a handheld naviga- 
tional system-uses just one transputer to address such 
issues as high performance, low cost. and low power. The 
second application-a long-range, three-dimensional rd- 

dar system-uses up to 4,000 transputers to provide 
supercomputer levels of performance. but in :I real-time 
application. 

Hand-held satellite navigation system 
Some 18 satellites, in six orbits, operate as part of a 

Global Positioning System, Each satellite continuously 
transmits its position in an encoded form, and by listen- 
ing to four satellites one can calculate the position (in 
three dimensions) of the receiving station. 

The traditional approach involves the use of complex 
dedicated signal processing hardware. However, the Gypsy 
hand-held receiver, developed by Columbus Positioning 
Limited, performs the complex signal processing and 
mathematics required in one transputer, which also ser- 
vices a keyboard and controls a display (see Figure A). 

A large, delreloping market for the system includes 
marine navigation, transport control systems (reporting 
delivery truck positions). and automotive applications 
(dashboard navigation systems). 

The advantages of the transputer-based solution over 
the traditional approach include relatively fast acquisi- 
tion time (which also saves battery power). the elimina- 
tion of custom logic for signal processing. the minimal 
amount of glue logic required. the lo= specification re- 
quired on radio oscillators (transputer software performs 
frequency compensation). and quick implementation of 
future product changes. 

Long-range radar system 
The Martello long-range, three-dimensional radar sys- 

tem under construction by Marconi Radar Systems uses up 
to 4,000 transputers for signal processing of the radar re- 
turns.’ The transputers combine to form a very fast parallel 
computer that accepts digitized radar returns at its input 
and defines the range, bearing, and height of every target 
at its output. (Some environmental information is also added 
to the output.) The processing load amounts to roughly 
three billion operations per second through each radar 
channel. 

The alternative to transputers-hardnriring-is inherently 
expensive (previous Martello systems used about 50 dif- 

Figure A. Gypsy hand-held receiver. 

ferent board types). With radar technology now moving 
so fast, harcl\viring IS doul~ly expensive because boards 
are quickly rendered out of date. By contrast, in the 
transputer system. sof&2re performs the entire signal pro- 
ccssing task, and the same basic computer remains usable 
throughout a \vholc generation of racla~-s. 

The signal processing algorithms take place in Ireal-time 
by using pipeline parallelism to spread the parts of the 
algorithms across an al-~-a). L\ ith computation overlapping 
communications (see Figure I3 on the next p;ige). Simula- 
tion devised the optimum map. making it necessav to 
build only a sn~all part of an array to prove the concept. In 
an array node of 50 transputers. housekeeping uses two 
transputers, while the rest are a\2ilable for data processing. 

December 1990 17 



Transputers 

Two sample applications 
cor2tinuedfkm p. 17 

HDLC Dual 
Digitized Radar Processed Monitor Timing Timing serial Ethernet 

video control video video in out interface interface 

t t t t t t t 
Master + 
control 

unit 
Control 

Interface Video Waveform and Control 
buffer generator status processor 

interface 

tf t t t tt 

Node 

I I Radar Extracted 

Typical 
application 
interface 

57400 array in a 
typical application 
as a radar signal 

Figure B. Diagram of Martello radar system architecture. 

Geometric parallelism achieves the processing rate The vast number of processors in the Martello com- 
required for the Martello radar. The radar coverage breaks puter areIS-bit T222 transputers, with some 32-bit T425 
into range bands, and a particular array node directs all transputers. A follow-on project proposes to constntct a 
samples from a given band. Each array node executes multifunctional radar for the Italian navy using floating- 
an identical program, but on different data. The scalable point transputers. However, no fundamental change to 
performance of the radar is proportional to the number the architecture is necessary to take advantage of new 
of array nodes. generations of transputers. 

project (see ESIWT Supernode box). This project led to the 
development of many new commercial hardware and soft- 
ware products, including the Inmos T800 transputer, the 
Parsys Supernode machine, the Telmat T-node machine, 
and the N.A. Software Limited’s parallel processing librar- 
ies for Fortran numerical routines. More significantly, the 

project contributed greatly in establishing the need for 
reconfigurable systems and in creating paradigms for par- 
allel programming. 

The personal workstation also opened up another mar- 
ket for the transputer, since it provides the basis for work- 
station accelerators. More than 50 companies now market 
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The ESPRIT Supernode Project 

Over about a four-year period (Dec. 1985-Nov. 19891, 
the Supernode Project aimed to create a low-cost, high- 
performance computer system from transputers. This 
project incorporated the development of the T800 
floating-point transputer’ and the Supernode RTP 
(Reconfigurable Transputer Processor). 

One Supernode consists of 16 transputers connected 
via a crossbar switch (also developed during the project). 
Using crossbar switches, multiple Supernodes combine 
to provide systems of up to about 1,000 transputers with 
no limitations on topology (except those implied by the 
four links on each transputer). Constructing larger sys- 
tems remains possible with minor constraints on topology. 

The wide range of applications demonstrated on the 
Supemode included finite-element analysis, logic simu- 
lation, luminosity simulation, and real-time image analy- 
sis. Development of parallel algorithms and parallel 
numerical libraries also occurred. 

The main results demonstrated the feasibility of the 
system, and the surprising ease in programming appli- 
cations to take advantage of concurrency. A large num- 
ber of European research projects base their development 
of parallel computing techniques on the now commer- 
cially exploited Supernode. 

accelerator cards, offering a range of hardware and soft- 
ware capabilities. Initially these cards targeted the develop- 
ing transputer embedded systems market. However, as 
application software for the transputer grew, the market- 
place widened-first to engineering design workstations and 
more recently to commercial and financial workstations. 
Several workstations based entirely on transputers are now 
available. 

ESPRIT projects continue to attack the difficult problems 
of providing very high performance systems (see box for 
current projects). The original issues concerned the feasibil- 
ity of constructing such systems (possibly containing thou- 
sands of processors) and determining the methods of 
programming individual applications. The Supemode project 
developed a machine that could effectively execute a wide 
range of applications, and in many cases nearly achieved 
the theoretical maximum performance from the machine. 

Current ESPRIT project issues involve “scalability,” “port- 
ability,” and programming ease. Scalability refers to the ease 
of achieving increased performance from an application by 
using more processors. Portability relates to the ease of 
transferring programs between parallel machines of differ- 
ent architectures, The term “general-purpose” summarizes 
these issues of parallel computing. A general-purpose par- 

Current ESPRIT projects 

The Supernode 2 project studies software issues- 
particularly those concerned with advanced operating 
systems-in the context of the Supemode machine. Such 
an operating system converts the machine from one that 
runs one application into a more general-purpose facility. 

The two-year PUMA (Parallel Universal Message- 
passing Architecture) project explores the possibilities 
offered by the new virtual communications architecture 
(see the “The next-generation transputer” section in the 
main article). Besides studying the performance offered 
by various topologies and the implications for computer 
architecture, the project examines high-level models of 
parallelism and their implementation using a virtual 
message-passing system. 

The three-year GPMIMD (General Purpose, Multiple- 
Instruction, Multiple-Data) project aims to develop a 
standard European MIMD architecture based on Hl 
transputers and virtual communications. Four main Eu- 

ropean transputer-supercomputer manufacturers- 
Meiko, Parsys, Parsytec, and Telmat--currently work as 
key collaborators on the project, which is led by Inmos. 

The OMI MAP (Open Microsystems Initiative Micro- 
processor Architecture Project) forms the core of the 
European-led Open Microsystems Initiative. It aims to 
define the architecture of a new microprocessor family 
designed to exploit the VLSI capabilities anticipated in 
the latter half of the 1990s. Collaborators include Bull, 
Inmos, Olivetti, Siemens, and Thomson. 

Several other projects exploit the transputer architec- 
ture for specific application areas. For example, Padmavati 
(Parallel Associative Development Machine as a Vehicle 
for Artificial Intelligence) uses transputers and associa- 
tive memory for symbolic processing. 

allel computer executes a range of applications without 
concern for the number of processors employed or the to- 
pology in which they are connected. Indeed, whether the 
underlying hardware architecture is based on message passing 
(such as transputer-based and hypercube-style systems) or 
shared memory (such as Sequent’s Balance system or Cedar 
systems) is of no concern to the programmer. 

The expertise derived from ESPRIT and Supemode projects 
continues to spin off other applications. Migration of pro- 
cessing techniques and applications from general-purpose 
computers into special-purpose systems signifies a definite 
computing trend. For example, high-performance laser printers 
incorporating Postscript processing and intelligent terminals 

continued on p. 76 
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Transputers 
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supporting windowing systems enjoy increasing popularity. 
In both cases, the workstation formerly carried out the corre- 
sponding processing. Similarly, one expects techniques for 
high-performance systems developed on machines such 
as Supernode to migrate into next-generation embedded 
systems. 

Transputer architecture 
The development of transputer architecture involved four 

main objectives: 

l it created a commercial  product range that set new 
standards in ease of programming and engineering; 

l it provided max imum performance to the user; 
l it allowed the exploitation of future developments in 

VLSI technology within a compatible family; and 
l it created a programmable component for building 

systems with large numbers of concurrent computing 
components. 

A transputer contains a processor. memory,  and a num- 
ber of standard point-to-point communicat ions links-all 
integrated into one silicon chip (as shown in Figure 1). An 
external memory interface extends the on-chip memory.  ‘When 
appropriate, transputers also incorporate special-purpose 
processing and/or interfacing capabilities. Separating the 
external memory interface (for local memory)  from the 
communicat ions optimizes performance and minimizes 
contention 

11 Processor 

Link in 
Link out 

Applications/external memory interface 

Figure 1. Processing and interfaces in transputer 
architecture. 

A system is constructed from one or more transputers 
operating concurrently and communicat ing through stan- 
dard links. The programming language Occam (see box) 
formalizes the computational model. Occam describes a 
system as a collection of processes and communicat ions 
that operate concurrently and communicate through channels. 

Transputer processing 
The transputer directly implements the Occam model of 

concurrency. A hardware scheduler allows any number of 
Occam processes to share a single processor, and transputer 
instructions implement Occam message passing. An appli- 
cation designer can configure a collection of processes ready 
for execution on a network of transputers. Each transputer 
executes a component process and transputer links imple- 
ment Occam channels. 

Roth internal and external communicat ions use the same 
instructions, allowing for Occam program reconfiguration 
(such as using a different processes-to-processors alloca- 
tion) without recompilation. In particular, an application 
designer can configure an Occam program to execute on a 
small number of transputers for low cost or on a larger 
number of transputers for high performance. 

The transputer processor supports fast interrupt response 
by providing two levels of priority. (Typically, the interrupt 
response is less than 1 microsecond on a 20-MHz clock 
transputer; worst case, it is less than 4 microseconds). Using 
the ALT construct (a key word in Occam meaning alterna- 
tive), a high priority process waits for the first of several 
inputs to become ready. It then executes the specific piece 
of code to respond to the particular interrupt. 

The processor treats access to a timer as an input. In a 
delayed input, the process waits until the timer reaches an 
appropriate value. The processor supports an arbitrary number 
of timer inputs. A programmer can also use a timer input 
within an ALT construct as a time-out on a communication. 

Developing the transputer instruction set involved five 
design objectives: 

l to implement Occam effectively, so that high-level lan- 
guage usage results in the effective use of silicon capa- 
bility, and that highly concurrent programs execute with 
minimum overheads; 

l to implement Occam simply and directly to faciliate easy, 
straightfonvard program compilation, and to ensure that 
lower level programming is unnecessary; 

l to provide word-length independence, so that a pro- 
gram executes using processors of different word lengths 
without recompilation; 

l to provide position independence, so that programs and 
workspaces are allocated anywhere in memory after 
recompilation; and 

cont inued on p. 78  
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Basic Occam concepts 

The Occam language’ programs concurrent, distributed 
systems. The word distributed emphasizes the unsuitabil- 
ity of previous languages in this area. Occam describes a 
system as a collection of concurrent processes that com- 
municate with each other and with peripheral devices 
through channels. Concurrent processes do not communi- 
cate via shared variables; thus Occam is particularly suit- 
able for programming systems with no memory sharing 
between processors. 

Occam provides three primitive processes: 

u:= e Assign expression e to variable LJ 
c! e Output expression e to channel c 
c? u Input from channel c to variable u 

Occam provides constructs that combine primitive 
processes: 

SEQ 

PAR 

ALT 

Components execute one after 
another (sequential) 
Components execute together 
(parallel) 
First ready component executes 
(alternative) 

implements as a loop and is equivalent to 

SEQ 
a[basel 
a[hdse + 11 
., 
albase + count - 11 

:= base 
:= base + 1 

:= base + count - 1 

Replication used with PAR provides arrays of similar 
processes. AL?‘ and IF can also be replicated. 

Using a construct as a component in another con- 
struct makes it possible to design a system as a set of 
nested processes (for example, by using PAR within 
PAR as shown in Figure C). The messages input and 
output on the channels of a process fully specify the 
process, and this completely hides its internal structure 
from the outside world. 

Internally, the programmer can structure the process 
itself as a set of nested processes. At any level of design. 
the designer works with a small and manageable set of 
processes. 

The language also provides IF and WHILE constructs. 
A construct is itself a process and it may be used as 

a component of another construct. Occam syntax uses 
indentation to indicate program structure. 

A programmer writes parallel programs by using 
channels, inputs, and outputs combined in parallel and 
alternative constructs. Each Occam channel provides a 
communication path between two processes. Commu- 
nication is synchronized and takes place when both 
the inputting and the outputting processes are ready. 
Data to be communicated is copied from the outputting 
process to the inputting process, and both processes 
continue. 

An AL?‘ process waits for input from any one of a 
number of channels. ALT takes input from the first to 
be used for output by another process. 

Occam provides a replicated constructor. For example 

SEQ i = base FOR count 
a[il := i Figure C. Design of nested Occam language processes. 
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Transputers 

I 
l to pl-ovide lo\\.-latency response to communications with 

external devices. 

The resulting design’ uses a simple linear address space. 
I 
~ 

six functional registers for sequential programming (see Fig- 
ure 2), and additional registers as qiwue pointers to support 
concurrency. 

, Regrrs , ( Locals ( 1 Program / 

Ic1 I I 
Workspace 

Next instruction L 
Ooerand 

Figure 2. Function of transputer registers for sequential 
programming. 

The six registers for sequential programming are the 

l Lvorkspace pointer that points to a storage area contain- 
ing local variables. 

l instruction pointer that points I0 the next instruction to 
lx executed. 

l operand register used to form instnlcrion operands, and 
l A, I3, and C registers that form an evaluation stack. This 

stack holds the operands and intermediate results for 
expression e~luation. 

The hardware scheduler allows for the combined execu- 
tion of any number of processes through the sharing of pro- 
cessor time. AT any time. a concurrent process is active (either 
currently executing or on a list awaiting execution) or inac- 
tive (either ready to input. ready to output. or waiting until a 
specified time). 

A list holds active processes awaiting execution. This linked 
list of process workspaces uses tno registers in implemen?d- 
tion--one that points to the first process on the list and one 
that points to the last process. The hardware scheduler main- 
tains ho such liats+)ne for high-priority processes, the other 
for low-priority processes. 

The implementation of the instrucrion set uses a single 
level of microcode. Many instruclions execute in one cycle 
(50 ns on a X-MHz transputer); many of the rest execute in 
two cycles. Some complex functions (such as block move) 
take an arbitrary number of cycles. These instructions still 
provide higher perfoi-mance than possible with software. 

To limit the latency figure for switching between low and 
high priority, t ime-consuming instructions allow a switch 
during execution. Consequently, the processor never takes 

more than 4 microseconds to switch between low priority 
and high priority. 

A context switch het\veen processes executing at low pri- 
ority occurs only when the evaluation stack contains no use- 

ful contents. With minimal need to save and restore registers, 
the processor implements concurrency very efficiently. 

The instruction format uses very compact encoding based 
on l-byte instructions. Prefixing instructions are used to form 
long operands. The instruction size is independent of the 
word length. In general, a program requires much less slor- 
age to hold it than an equivalent program in a conventional 
or RISC microprocessor. Since a program requires less star- 
age to represent it. fetching instructions use less memory 
bandwidth. As the transputer accesses memory one word at 
a time, the processor receives several instructions for every 
fetch (depending upon the number of bytes in a word). 

In addition to Occam, high-performance compilers for C, 
Fortran, Pascal. and Ada have been implemented for the 
transputer. 

Transputer communications 
A link between two transputers implement? a pair of Occam 

channels, one in each direction. Two one-directional signal 
lines connect a link interface on one transputer to a link 
interface on the other transputer. Each signal line carries data 
and control information. 

Communication through a link involv-es a simple protocol, 
which supports the synchronized communicarion of Occam. 
The protocol provides for the transmission of an arbitrary 
sequence of bytes, which allows trdnsputers of different \vorcl 
lengths to communicate. 

Each byte transmits as a start bit. fohWed by a one bit. 8 
data hits, and a stop bit (see Figure 3a). After transmitting a 
data byte, the sender waits until receiving an acknowledgment. 
which consists of a start bit followed by a zero bit (see Figure 
3b). The acknowledgment signifies both that a process re- 
ceived rhe acknowledged byte. and that the receiving link is 
ready to receive another byte. The sending process proceeds 
only after receiving acknowledgment for the final byte. 

Data bytes and acknowledgments multiplex down each 
signal line. An acknowledgment transmits as soon as recep- 

1 1 Data 0 
I I I I I I I 

(4 

04 

Figure 3. Formats of data links (a) and acknowledgment (b). 
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tion of a data byte begins (provided a process is waiting for 
it and room to buffer another data byte is available). Conse- 
quently, transmission may continue without delays between 
data bytes. 

As the transputer uses transistor-transistor-logic-compatible 
(‘ITL) signals, the applications engineer can extend the links 
by inserting industry-standard line drivers and receivers. 

The design of the links makes engineering of transputer 
systems easy. Irrespective of internal performance, all trans- 
puters use a i-MHz clock for frequency reference. The low 
frequency simplifies the clock distribution in large transputer 
systems. The communications system does not require a phase 
reference. Therefore, it is not necessary for all transputers to 
operate on the same clock. The flexibility to use a number of 
clocks enables interworking between independently designed 
(sub)systems. 

The use of point-to-point serial communications, instead 
of buses, offers the following advantages: 

l simplified board layout and backplane design; 
l increased communications bandwidth, as many links in 

a system operate concurrently; and 
l easy interconnection of devices with different word 

lengths and performance. 

Transputers with different word lengths and performance 
all interwork together, ensuring the easy upgrading of sys- 
tems as the technology advances. It is not necessary to 
downgrade a connected set of components to the perfor- 
mance of the slowest component! 

Each transputer contains a separate communications en- 
gine, allowing communications to proceed in parallel with 
the execution of processor instructions. Indeed. many appli- 
cations completely overlap communications and processing, 
maximizing overall system throughput. 

Two link adapters and a link switch add to the flexibility 
and use of communications. The link adapters provide an 
interface between a link and a byte-wide port. The Inmos 
COO4 link switch provides a crossbar switch between 32 links, 
controlled by a separate configuration link. The COO4 is 
cascddable, allowing for the construction of arbitrary networks 
of transputers (limited only by the number of links on each 
transputer; most transputers contain four links). 

Programming paradigms 
While designing transputer-based hardware to perform at 

any desired level of performance is easy, one must ensure 
that the software configuration exploits the hardware archi- 
tecture. Software structured as a sequential program with 
conventional compilation operates no hster on 10 transputers 
than on one! 

For embedded systems, the design of software architec- 
ture and hardware architecture optimally occurs hand-in-hand, 

resulting in essentially a system design activity.’ 
To configure a program for a network of transputers, the 

applications designer identifies the parallelism. The designer 
subsequently maps the parallel processes onto the transputer 
network to optimize the system according to the design crite- 
ria (such as maximized performance and minimized latency). 

Experience gained to date with parallel systems-particu- 
larly with ESPRIT projects-identified a number of program- 
ming paradigms that help to structure systems designs.” These 
paradigms can be written in languages such as Ada,‘ or can 
employ parallel extensions or libraries in C or Fortran. How- 
ever, Occamj describes these paradigms most conveniently. 

Descriptions of the paradigms for algorithmic parallelism. 
geometric parallelism, and farming appear below: 

1) Algorithmicparallelism. The designer splits the applica- 
tion into functional units. In simple cases. these units 
can form a pipeline; in general, they can form more 
complex structures such as feedback loops. The various 
stages potentially operate in parallel. With a modest 
amount of buffering, the communication of data or par- 
tially computed results between stages will, in many cases, 
completely overlap processing (eliminating communi- 
cations overhead). The structure maps onto one or more 
transputers, up to the number of components in the 
structure, with the communications performed internally 
or via transputer links, as appropriate. For a pipe- 
line structure, its slowest stage limits the maximum 
performance. 

2) Geometricparallelism. Designers partition the design on 
a regular baSiS. For example, they can divide a screen 
image into quadrants, or a matrix operation into 
submatrices. A separate process performs the computa- 
tion for each partition. The processes often operate in- 
dependently or interact only with immediate neighbors. 
A particularly beneficial use of geometric parallelism in- 
volves scaling up the size of a problem to be solved 
(such as performing weather forecasting on a finer mesh). 

Designers usually implement geometric parallelism by 
allocating processes straightforwardly onto a physical 
regular network. Geometric parallelism usually attains 
maximum performance by considering granularity issues. 
The processes communicate very efficiently with their 
immediate neighbors when executing on the same pro- 
cessor. The processes communicate less efficiently with 
immediate neighbors when executing on separate pro- 
cessors. Where one process is allocated to each proces- 
sor (see Figure 4a on the next page). communication 
costs dominate performance in most instances. With all 
processes on a single processor, computation time 
dominates performance. 

Computation and communication achieve balance at 
an intermediate level of granularity (see Figure 4b). This 
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Figure 4. A  simple allocation of geometric parallelism 
granularity (a); a balanced allocation of geometric 
parallelism (b). 

balance results from ;I boundary-to-area effect (for two 
dimensional gritls) in \vhich the amount of communica- 
tion at the boundary varies linearly with tk grain size. 
ancl the area of computation varies as the square of the 
grain size. In comparing the two figures. the boundary 
to-are3 effect in Figure 4b results in four t imes the amount 
of computation, but only twice the communication 3s 
found in l?gwe 421. A similar sur~dce-to-voluime effect 
occurs for three-diinension~~l grids. 

3) F6Wn7ilg. Designers &vi& the application into small, 
similar pieces (for example, when needecl to process a 
large number of similar data items). Each transputer in a 
net\vork provides :I server process. and a master pro- 
cess allocates (or “farms out”) work to the servers as 
they become free. Farming provides two major benefits. 
First, it automatically balances the load--a server corn- 
pleting one piece of work immecliately proceeds to the 
next. Second, it functions relatively independent of the 
topology--any reasonably linked nemork works well. 
The limit to performance is the rate of dispensing work 
and handling results. 

The Ocam model of par:&zlism offers a significant hen- 
cfit: Messages sent and received completely &fine a process. 
The designer can structure ;1 process internally as a set of 
processes. thereby using any clesired level of nesting. A  very 
powerful technique, therefore, combines the above paradigms 
in one application, such as a farm of geometric-array servers 
functioning with pipeline components. (The earlier Occam 
box diagrams the Occam program that encapsulates all three 
paradigms within a simple top-level structure.) 

The designer can use these models to easily structure ap- 
plications tc) define a large amount of par:tllelism. The nar- 
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ro\v and easily defined interface specifications allow for easy 
reasoning about an application’s correctness. 

The next-generation transputer 
For the past two years. a team at Inmos’s bistol, Engjand. 

design center has heen working to enhance the tmnsputer‘s 
performance and suitability for emheddcd systems. From this 
work, a new product family-based around a new processor 
code-named Hl-will be launchecl in Spring 1991.” 

The team‘s design goal called for establishing a new stan- 
dard in single-processor performance while enhancing the 
trdnsputer family‘s position as the premier multiprocessing 
microprocessor. It also required maintaining upwartl coin- 
patihility with existing transputer products. 

To meet these goals, the team developed a new micro- 
architecture that implements the same instruction set as the 
existing Inmos T8Oi transputer. The Hl provides an order- 
of-magnitude increase in performance, combined with en- 
hdncecl capabilities to support the sofbxire standards emerging 
in the enibedclecl systems marketplace. 

The HI architecture includes such key features as a 
pipelined. superscalar processor combined with on-chip cache 
RAM. and improved communications that provide a new 
degree of freedom in multiprocessor programming. 

To complement the HI transputer. Inmos is now design- 
ing a range of network communication products based on a 
new lOO-Mbit/s link protocol. The protocol supports the dy- 
namic routing of messages between processors. 

Hl performance 
The Hl provides a peak performance in excess of 150 

MIPS (million instructions per second) ancl 20 Mflops (mil- 
lion floating-point operations per second) and ;L sustained 
performance exceeding 60 MIPS and 10 Mflops. It maintains 
instruction-set compatibility \\;ith the T8Oi. 

A  number of design features contribute to the achieve- 
ment of these performance levels. The processor itself uses a 
pipelined. superscalar architecture, \vhich executes up to eight 
instructions on each clock cycle and operates at 3 clock speed 
of 50 MHz. The number of cycles required to execute many 
instructions-such as integer and floating-point multiply, and 
logical shift--decreases significantly. 

I:nlike other superscalar machines, the Hl architecture does 
not require an advancecl compiler to schedule the different 
fWKtiOnal units in the processor. Hardware controls the flow 
of multiple instructions through the pipeline. It is not neces- 
sary to modify existing compilers or recompile source code. 

An advanced suhmicron, CMOS (complementary metal- 
oxide semicontluctor) process allows a high transistor count 
and high clock frequency operations. This process enables 
the implementation of a sophisticated processor and pro- 
vides 16 Kbytes of on-chip cache memory. 

The move to a cached architecture is 3 radical develop- 



ment. The 16.Kbyte cache is sufficiently large to achieve high In contrast. hut in keeping with its intended market, addi- 
hit rates for most applications. The HI still allows for directly tional Hl transputer enhancements allow programmers to 
addressed. on-chip RAM for applications containing only SlTldll write more efficient real-time kernels. These enhancements 
amounts of memory. or ones intolerant of indeterminate access and control the state of the machine, the process and 
performance c;iiised hy cache-line misses. timer queues, and time slicing and interruptdhility mechanisms. 

The design team took great care to ensure that the Hl 
transputer \vill provide high performance levels in low-com- 
ponent-count systems. For example, the Hl will provide a 
programmable memory interface with a @bit data bus sus- 
taining high data transfer rates for cache-line refill. The inter- 
face supports four independent banks of external memory, 
and the timing for each hank is configured independently 
from software. For example. an application designer can 
choose to fill two hanks with dynamic RAM-one bank with 
virtual RAM, the other with peripherals. Such a system fre- 
quently requires no external support logic. 

New freedom 

Hl error-handling and user-mode processes 
The Hl transputer hardware supports the same scheduling 

algorithms used by current-generation transputers. such as 
the T80i. In addition. on the 111 transputer each process may 
use ;I second process (known as a trap handler). When an 
error-such as an integer overflolv or ;I tloating-point er- 
ro--occurs. control transfers to the trap handler. The trap 
handler copes with the error in soft\vdl-e in all cases before it 
(in most instances) returns control to the process in which 
the error occurred. 

A limitation in exploiting existing tuansputer nemorks is 
the need to match the parallel structure of the algorithms 
used to the interconnectivity provided. In the worst case, a 
specific machine possesses a fixed topology. In the best case 
(21 totally reconfigurahle architecture sucl~ as the Supernode). 
the limitation of four links per transputer restricts mapping. 
This limitation can result in poor software portability. 
nonoptimum design, and scalahili~ prohlcms. 

The Hl product family largely eliminates this problem h) 
providing hard\~are to allow transputer connections via a 
low-latency communication network. It supports communiG 
cation channels l,et\veen any two processes anywhere in the 
nemork. 

The Hl also supports a separate user mode. This mode 
prevents privileged instructions (including communications 
and scheduling instructions) from executing. It checks and 
translates all memory accesses from 3 logical to the physical 
address space. 

The hard\\are simplifies programming hecause designers 
do not need to consider how to allocate processes to the 
transputer network until after completion of the program 
lvriting. They can USC different allocations on different ma- 
chines and they can change the allocation to optimize per- 
formance. In addition. it is possible-at least in principle-to 
let the compiler make this allocation. effecti\.ely removing all 
configuration tlet& from the program I’ountain” discusses the 
coiniii~lnications capabilities of the 111 product fdmily in 

greater detail. ‘I’he following paragraphs sum up thrse 
capabilities. 

The Hl transputer itself contains a separate communica- 
tions processor, which multiplexes a large number of logical 
communication links (virtual links) along each of its physical 
links. Each virtual link supports one Occam channel in each 
direction. 

H 1 transputer enhancements 

allow programmers to write 

more efficient real- time kernels. 

Memory protection and address-translation mechanisms 
specifically support secure programming and &hugging in 
embedded systems. For dedicated (single-user) systems. the 
protection aids the detection of programming errors. For 
multiuser. genera-purpose computing systems, it protects 
users and the operating system from erroneous programs. 

The protection and translation mechanisms are optimized 
for the requirements of embedded systems. These mecha- 
nisms allow the processor to execute code in protected (user) 
mode at the same speed 21s normal processes without the 
performance overhead involved in supporting page-based. 
virtual memory. 

The communications processor transmits messages as a 
sequence of packets. \vhich all contain 32 bytes of data ex- 
cept the last packet. Each message packet starb with ;I header, 
bvhich routes the packet through the communication net- 
work and identifies the destination virtual link on the remote 
transputer. 

Designers construct a separate communications nehvork 
using the Inmos Cl04 routing device and can use one Cl04 
to connect small numbers of Hl transputers. In larger systems. 
designers can use Cl04 connections to form a hypercuhe, a 
mllltidilnensional grid. or a tree network. 

Each Cl04 provides 32 bidirectional links. The header of 
each packet arriving on a link input determines the link on 
which to output the packet. As soon as the link output is 
free. the whole packet transmits through it. 

An algorithm known as interval labeling decides through 
which link to send a packet. In intenlal labeling. each output 

December 1990 81 



Transmters 

link is associated with a continuous set of header values (an 
interval). The header of an incoming packet lies within only 
one range. and the packet transmits to the associated link. 
Optimum, deadlock-free labeling schemes exist for each of 
the common network topologies. 

The Cl04 provides additional facilities to connect networks 
together and reduce the impact of message congestion on 
worst-case latency and bandwidth in heavily loaded networks. 

THE TRANSI’UlER IS WELL ESTABLISHED as a highly cost- 
effective processor, particularly in embedded applications. It 
provides unique advantages for applications that require more 
than one processor, and serves as the basis for many research 
programs in parallel computing. 

Inmos developed the current generation of transputers as 
general-purpose components for special-purpose machines. 
The introduction of a higher performance transputcr-sup- 
porting virtual communications, memory protection, and other 
advances-represents a significant step toward the develop- 
ment of general-purpose, multiprocessing computing systems. 
Research continues on the architecture to effectively exploit 
the full capabilities of VLSI technology during the 1990s. 
Meanwhile, the HI provides highly efficient implementations 
of conventional operating systems and real-time kernels. It 
greatly reduces the cost of porting existing software and up- 
grading existing applications to take advantage of the 
trdnsputer’s capabilities. /JJ 
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