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A s the use of computers affects 
increasingly broader segments of 
the world economy, many of the 

problems to which people apply com- 
puters grow continually larger and more 
complex. Demands for faster and larger 
computer systems increase steadily. For- 
tunately, the technology base for the last 
twenty years has continued to improve at 
a steady rate-increasing in capacity and 
speed while decreasing in cost for perfor- 
mance. However, the demands outpace 
the technology. This raises the question, 
can we make a quantum leap in perfor- 
mance while the rate of technology 
improvement remains relatively constant? 

Computer architects have followed two 
general approaches in response to this 
question. The first uses exotic technology 
in a fairly conventional serial computer 
architecture. This approach suffers from 
manufacturing and maintenance problems 
and high costs. The second approach 
exploits the parallelism inherent in many 
problems. The parallel approach seems to 
offer the best long-term strategy because, 
as the problems grow, more and more 
opportunities arise to exploit the parallel- 
ism inherent in the data itself. 

Where do we find the inherent parallel- 
ism and how do we exploit it? Most com- 
puter programs consist of a control 
sequence (the instructions) and a collection 
of data elements. Large programs have 
tens of thousands of instructions operat- 
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ing on tens of thousands or even millions 
of data elements. We can find opportuni- 
ties for parallelism in both the control 
sequence and in the collection of data 
elements. 

In the control sequence, we can identify 
threads of control that could operate 
independently, thus on different proces- 
sors. This approach, known as control 
parallelism, is used for programming most 
multiprocessor computers. The primary 
problems with this approach are the diffi- 
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culty of identifying and synchronizing 
these independent threads of control. 

Alternatively, we can take advantage of 
the large number of independent data ele- 
ments by assigning one processor to each 
data element and performing all opera- 
tions on the data in parallel. This 
approach, known as data parallelism,’ 
works best for large amounts of data. For 
many applications, it proves the most nat- 
ural programming approach, leading to 
significant decreases in execution time as 
well as simplified programming. 

Massively parallel architectures contain- 
ing tens of thousands or even millions of 
processing elements support this “data- 
parallel” programming model. Early 
examples of this kind of architecture are 
ICL’s Distributed Array Processor 
(DAP),’ Goodyear’s Massively Parallel 
Processor (MPP),3 Columbia Univer- 
sity’s Non-Von,4 and others.’ Each of 
these machines has some elements of the 
desired architecture, but lacks others. For 
example, the MPP has 16K (K = 1,024) 
processing elements arranged in a two- 
dimensional grid, but interprocessor com- 
munication is supported only between 
neighboring processors. 

The Connection Machine provides 64K 
physical processing elements, millions of 
virtual processing elements with its virtual 
processor mechanism, and general- 
purpose, reconfigurable communications 
networks. The Connection Machine 
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Figure 1. Connection Machine system organization. 

encompasses a fully integrated architec- 
ture designed for data-parallel computing. 

Architecture of the 
Connection Machine 

four sequencers. Each sequencer controls 
up to 16,384 individual processors execut- 
ing parallel operations. A high- 
performance, data-parallel l/O system 
(bottom of Figure 1) connects processors 
to peripheral mass storage (the DataVault) 
and graphic display devices. 

The Connection Machine is a data- System software is based upon the oper- 
parallel computing system with integrated ating system or environment of the front- 
hardware and software. Figure 1 shows the end computer, with minimal visible soft- 
hardware elements of the system. One to ware extensions. Users can program using 
four front-end computer systems (right familiar languages and programming con- 
side of Figure 1) provide the development structs, with all development tools 
and execution environments for system provided by the front end. Programs have 
software. They connect through the nexus normal sequential control flow and do not 
(a 4 x 4 cross-point switch) to from one to need new synchronization structures. 
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Thus, users can easily develop programs 
that exploit the power of the Connection 
Machine hardware. 

At the heart of the Connection Machine 
system lies the parallel-processing unit 
consisting of thousands of processors (up 
to 64K), each with thousands of bits of 
memory (four kilobits on the CM- 1 and 64 
kilobits on the CM-2). As well as process- 
ing the data stored in memory, these 
processors when logically interconnected 
can exchange information. All operations 
happen in parallel on all processors. Thus, 
the Connection Machine hardware directly 
supports the data-parallel programming 
model. 
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Figure 2. CM-1 data processors. 

Figure 3. Complex problems change topology. 

CM-l: First implementation of CM in 1980 at the MIT AI Laboratory, where 
concept. Hillis originally conceived the the basic architectural design and proto- 
Connection Machine architecture while at type custom integrated circuits were devel- 
MIT and described it in his thesis.6 The oped. It became clear that private 
design of the Connection Machine began enterprise would have to get involved to 
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actually build the machine, so Thinking 
Machines was founded in 1983. 

The Connection Machine Model CM-l 
was designed at Thinking Machines dur- 
ing 1983 and the first half of 1984. By the 
end of 1984, with funding from the 
Defense Advanced Research Projects 
Agency, Thinking Machines had built the 
first 16K-processor CM-l prototype. A 
demonstration of its capabilities took 
place in May 1985, and by November the 
company had constructed and successfully 
demonstrated a full 64K-processor 
machine. Thinking Machines commer- 
cially introduced the machine in April 
1986. The first machines went to MIT and 
Perkin-Elmer in the summer of 1986. 

As illustrated in Figure 1, the CM-l con- 
tains the following system components: 

l up to 64K data processors, 
l an interprocessor communications 

network, 
l one to four sequencers, and 
l one to four front-end computer 

interfaces. 
Although part of the original Connec- 

tion Machine design, the I/O system was 
not implemented until the introduction of 
the CM-2. 

CM-1 data processors and memory. The 
CM-1 parallel-processing unit contains 
from 16K to 64K data processors. As 
shown in Figure 2, each data processor 
contains 

l an arithmetic-logic unit and 
associated latches, 

l four kilobits of bit-addressable 
memory, 

l eight one-bit flag registers, 
I l a router interface, and 

l a two-dimensional-grid interface. 
The data processors are implemented 

using two chip types. A proprietary cus- 
tom chip contains the ALU, flag bits, and 
communications interface for 16 data 
processors. Memory consists of commer- 
cial static RAM chips, with parity protec- 
tion. A fully configured parallel-processing 
unit contains 64K data processors, consist- 
ing of 4,096 processor chips and 32 mega- 
bytes of RAM. 

A CM-l ALU consists of a three-input, 
two-output logic element and associated 
latches and memory interface (see Figure 
2). The basic conceptual ALU cycle first 
reads two data bits from memory and one 
data bit from a flag. The logic element then 
computes two result bits from the three 
input bits. Finally, one of the two results 
is stored in memory and the other result, 
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in a flag. The entire operation is condi- 
tional on the value of a context flag; if the 
flag is zero, then the results for that data 
processor are not stored. 

The logic element can compute any two 
Boolean functions on three inputs. This 
simple ALU suffices to carry out all the 
operations of a virtual-machine instruc- 
tion set. Arithmetic is carried out in a bit- 
serial fashion, requiring 0.75 microsecond 
per bit plus instruction decoding and over- 
head. Hence, a 32-bit Add takes about 24 
microseconds. With 64K processors com- 
puting in parallel, this yields an aggregate 
rate of 2,000 million instructions per sec- 
ond (that is, two billion 32-bit Adds per 
second). 

The CM processing element is a 
reduced-instruction-set-computer proces- 
sor. Each ALU cycle breaks down into 
subcycles. On each cycle, data processors 
execute one low-level instruction (called a 
nanoinstruction) issued by the sequencer, 
while the memories can perform one read 
or write operation. The basic ALU cycle 
for a two-operand integer Add consists of 
three nanoinstructions: LoadA to read 
memory operand A, LoadB to read mem- 
ory operand B, and Store to store the result 
of the ALU operation. Other nanoinstruc- 
tions direct the router and NEWS (north- 
east-west-south) grid, and perform diag- 
nostic functions. 

CM-I communications. Algorithm 
designers typically use data structuring 
techniques to express important relation- 
ships between data elements. For example, 
an image-understanding system usually 
employs a two-dimensional grid to repre- 
sent the individual pixels of the image. At 
a later stage in the processing, however, a 
tree data structure or relational graph 
might represent more abstract relation- 
ships such as those between objects and 
their parts (see Figure 3). 

On a serial machine with sufficient ran- 
dom access memory, pointers to memory 
elements are used to implement complex 
data structures. In a data-parallel architec- 
ture, however, individual data elements 
are assigned to individual processors and 
interprocessor communication expresses 
the relationships between the elements of 
very large data structures. 

The CM-l was designed with flexible 
interprocessor communication in mind 
and supports several distinct communica- 
tion mechanisms: 

l Broadcast communications allow 
immediate data to be broadcast from the 
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front-end computer or the sequencer to all 
data processors at once. 

l Global OR is a logicaM)R of the ALU 
carry output from all data processors, 
which makes it possible to quickly discover 
unusual or termination conditions. 

l Hypercube communication forms the 
basis for the router and numerous paral- 
lel primitives supported by the virtual- 
machine model. The topology of the net- 
work consists of a Boolean n-cube. For a 
fully configured CM- 1, the network is a 
1Zcube connecting 4,096 processor chips 
(that is, each ldprocessor chip lies at the 
vertex of a 12-c&e). An example of a par- 
allel primitive implemented with the 
Hypercube is Sort, which runs in logarith- 
mic time; sorting 64K 32-bit keys takes 
about 30 milliseconds. 

l The router directly implements 
general pointer following with switched 
message packets containing processor 
addresses (the pointers) and data. The 
router controller, implemented in the CM 
processor chips, uses the Hypercube for 
data transmission. It provides heavily 
overlapped, pipelined message switching 
with routing decisions, buffering, and 
combining of messages directed to the 
same address, all implemented in 
hardware. 

l The NEWS grid is a two-dimensional 
Cartesian grid that provides a direct way 
to perform nearest-neighbor communica- 
tion. Since all processors communicate in 
the same direction (north, east, west, or 
south), addresses are implicit and no col- 
lisions occur, making NEWS communica- 
tion much faster (by about a factor of six) 
than router communication for simple 
regular message patterns. 

CM-I sequencer, nexus, andfront-end 
interface. The CM-I sequencer-a spe- 

cially designed microcomputer used to 
implement the CM virtual machine-is 
implemented as an Advanced Micro 
Devices 2901/2910 bit-sliced machine with 
16K 96-bit words of microcode storage. A 
Connection Machine contains from one to 
four sequencers. The sequencer’s input is 
a stream of high-level, virtual-machine 
instructions and arguments, transmitted 
on a synchronous 32-bit parallel data path 
from the nexus. The sequencer outputs a 
stream of nanoinstructions that controls 
the timing and operation of the CM data 
processors and memory. 

The CM-1 nexus-a 4 x 4 cross-point 
switch-connects from one to four front- 
end computers to from one to four 
sequencers. The connections to front-end 
computers are via high-speed, 32-bit, par- 
allel, asynchronous data paths; while the 
connections to sequencers are syn- 
chronous. The nexus provides a partition- 
ing mechanism so that the CM can be 
configured as up to four partitions under 
front-end control. This allows isolation of 
parts of the machine for different users or 
purposes (such as diagnosis and repair of 
a failure in one partition while other par- 
titions continue to run). When more than 
one sequencer is connected to the same 
front-end through the nexus, they are syn- 
chronized by a common clock generated 
by the nexus. 

The front-end bus interface supports a 
32-bit, parallel, asynchronous data path 
between the front-end computer and the 
nexus. The FEBI is the only part of the 
CM-1 that lies outside of the main cabinet. 
It resides as a board in the system bus of 
the front end (any DEC VAX containing 
a VAXBI I/O bus and running Ultrix, or 
a@Symbolics 3600 series Lisp machine). 

CM virtual-machine model. The CM 
virtual-machine parallel instruction set, 
called Paris, presents the user with an 
abstract machine architecture very much 
like the physical Connection Machine 
hardware architecture, but with two 
important extensions: a much richer 
instruction set and a virtual-processor 
abstraction. 

Paris. Paris provides a rich set of paral- 
lel primitives ranging from simple arith- 
metic and logical operations to high-level 
APL-like reduction (parallel prefix) oper- 
ations,’ sorting, and communications 
operations. The interface to Paris between 
the front end and the rest of the Connec- 
tion Machine reduces to a simple stream of 
operation codes and arguments. The argu- 
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Figure 4. Connection Machine Model CM-2 and DataVault. 

ments usually describe fields to operate on, 
in the form of a start address and bit 
length. Arguments can also be immediate 
data, broadcast to all data processors. 

Most of Paris is implemented in firm- 
ware and runs on the sequencers, where 
the opcode/argument stream is parsed and 
expanded to the appropriate sequence of 
nanoinstructions for the data processors. 
Since Paris defines the virtual-machine 
instruction set, we use the same name for 
the assembly language of the Connection 
Machine. 

Virtualprocessors. Data-parallel appli- 
cations often call for many more individ- 
ual processors than are physically available 
on a given machine. Connection Machine 
software provides for this through its 
virtual-processor mechanism, supported 
at the Paris level and transparent to the 
user. When we initialize the Connection 
Machine system, the number of virtual 
processors required by the application is 
specified. If this number exceeds the num- 
ber of available physical processors, the 
local memory of each processor splits into 
as many regions as necessary, with the 
processors automatically time-sliced 
among the regions. 

For example, if an application needed to 
process a million pieces of data, it would 
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request V = 2*’ virtual processors. 
Assume the available hardware to have 
P =216 physical processors, each with 
M = 216 bits of memory (the size for CM-2 
memory; M = 2’* bits of memory for the 
CM-l). Then each physical processor 
would support V/P = 16 virtual 
processors. 

This ratio V/P, usually denoted N, is 
called the virtual-processor ratio, or VP- 
ratio. In this example, each virtual proces- 
sor would have M/N = 2’* bits of mem- 
ory and would appear to execute code at 
about l/N = l/16 the speed of a physical 
processor. In fact, virtual processors often 
exceed this execution rate, since instruc- 
tion decoding by the sequencer can be 
amortized over the number of virtual 
processors. 

CM software environment. The Con- 
nection Machine system software uses 
existing programming languages and envi- 
ronments as much as possible. Languages 
are based on well-known standards. Min- 
imal extensions support data-parallel con- 
structs so that users need not learn a new 
programming style. The Connection 
Machine front-end operating system 
(either Unix or Lisp) remains largely 
unchanged. 

Fortran on the Connection Machine 

system uses the array extensions in the 
draft Fortran 8x standard (proposed by 
American National Standards Institute 
Technical Committee X3J3) to express 
data-parallel operations. The remainder of 
the language is the standard Fortran 77. 
No extension is specific to the Connection 
Machine; the Fortran 8x array extensions 
map naturally onto the underlying data- 
parallel hardware. 

The *Lisp and CM-Lisp languages are 
data-parallel dialects of Common Lisp (a 
version of Lisp currently being stan- 
dardized by ANSI Technical Committee 
X3J13). *Lisp gives programmers fine 
control over the CM hardware while main- 
taining the flexibility of Lisp. CM-Lisp is 
a higher-level language that adds small 
syntactic changes to the language interface 
and creates a powerful data-parallel pro- 
gramming language. 

The C * language is a data-parallel exten- 
sion of the C programming language (as 
described in the draft C standard proposed 
by ANSI Technical Committee X3Jll). 
C * programs can be read and written like 
serial C programs. The extensions are 
unobtrusive and easy to learn. 

The assembly language of the Connec- 
tion Machine, Paris, is the target language 
of the high-level-language compilers. Paris 
logically extends the instruction set of the 
front end and masks the physical imple- 
mentation of the CM processing unit. 

Evolution of the CM-2. Experience 
gained during the first year of in-house use 
of the CM- 1 led to the initiation of a proj- 
ect to build an improved version of the 
machine: the Connection Machine Model 
CM-2. 

The design team established several 
goals for the CM-2: increasing memory 
capacity, performance, and overall relia- 
bility while maintaining or improving ease 
of manufacturing. To continue to support 
the CM-I customer base, the designers 
wanted the CM-2 to be program compat- 
ible with the previous machine. Finally, 
the designers wanted the CM-2 to incor- 
porate a high-speed I/O system for 
peripheral data storage and display 
devices. 

To satisfy these goals, CM-2 kept the 
basic architecture of the CM-I (see Figure 
1). To increase performance, the CM-2 
incorporates a redesigned sequencer and 
CM processor chip and an optional 
floating-point accelerator. A four-fold 
increase in microcode storage in the 
sequencer allowed for improvements in 
performance and functionality in the 
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virtual-machine implementation. A 
sixteen-fold increase in memory capacity 
brought total memory capacity up to 512 
megabytes. Enhanced reliability resulted 
from adding error correction to the mem- 
ory system, and diagnostic capability was 
improved by increasing the number of 
data paths with error detection (parity). A 
redesigned NEWS grid increased function- 
ality and ease of manufacture. CM-2 
implemented an I/O system to support a 
massively parallel disk system (called the 
DataVault) and a high-speed color 
graphics system. 

The CM processor chip underwent rede- 
sign in late 1985 and early 1986. The first 
prototype of the CM-2 was working by the 
end of I986. The company commercially 
introduced the CM-2 (see Figure 4) in April 
1987, and delivered about a dozen 
machines to customers in the fall of 1987. 
The first DataVault was delivered at the 
end of 1987. 

CM-2 data processors and memory. The 
CM-2 data processor strongly resembles 
the CM-l data processor. The major 
differences are 

l 64 kilobits of bit-addressable memory 
instead of four kilobits, 

l four one-bit flag registers instead of 
eight, 

l an optional floating-point accelerator, 
l a generalized NEWS-grid interface to 

support n-dimensional grids, 
l an I/O interface, and 
l increased error-detection circuitry. 
The CM-2 data processors are imple- 

mented using four chip types. A proprie- 
tary custom chip contains the ALU, flag 
bits, router interface, NEWS-grid inter- 
face, and I/O interface for 16 data proces- 
sors, and part of the Hypercube network 
controller. The memory consists of com- 
mercial dynamic RAM chips, with single- 
bit error correction and double-bit error 
detection. The floating-point accelerator 
consists of a custom floating-point inter- 
face chip and a floating-point execution 
chip; one of each is required for every 32 
data processors. A fully configured 64K- 
processor system contains 4,096 processor 
chips, 2,048 floating-point interface chips, 
2,048 floating-point execution chips, and 
half a gigabyte of RAM. 

CM-2 floating-point accelerator. In 
addition to the bit-serial data processors 
described above, the CM-2 parallel- 
processing unit has an optional floating- 
point accelerator closely integrated with 
the processing unit. This accelerator has 

The DataVault 
combines high 

reliability with fast 
transfer rates for large 

blocks of data. 

two options: single precision or double 
precision. Both options support IEEE 
standard floating-point formats and oper- 
ations, and increase the rate of floating- 
point calculations by a factor of more than 
20. Taking advantage qf this speed 
increase requires no change in user 
software. 

The hardware associated with each of 
these options consists of two special- 
purpose very-large-scale-integration chips: 
a memory-interface unit and a floating- 
point execution unit for each pair of CM-2 
processor chips. Because the floating- 
point units access memory in an 
orthogonal manner to the CM-2 proces- 
sors, the memory-interface unit transposes 
32-bit words before passing them to the 
floating-point unit. 

Firmware that drives the floating-point 
accelerator stages the data through the 
memory-interface unit to the floating- 
point execution unit. In general, it takes 
5 N stages to implement a floating-point 
operation, for a virtual-processor ratio of 
N. However, the firmware is pipelined so 
as to require only 3 N + 2 stages instead of 
5 N stages. 

CM-2 communications. The CM-2 
communications are basically the same as 
those of the CM-I with two exceptions. 
First, we redesigned the router to improve 
reliability, diagnostic capability, and per- 
formance. For example, we enhanced its 
performance by providing hardware for 
en route combining of messages directed 
to the same destination. The combining 
operations supported include Sum, Logi- 
cal OR, Overwrite, Max, and Min. 

The second major difference lies in the 
nature of grid communications. We com- 
pletely redesigned grid communications 
for the CM-2. We wanted to increase flex- 
ibility and functionality while simplifying 
the overall system architecture and 
increasing manufacturing ease and relia- 

bility. We accomplished this by replacing 
the two-dimensional NEWS grid with a 
more general n-dimensional grid imple- 
mented on top of the Hypercube (by grey- 
encoding addresses). We enhanced flexi- 
bility and functionality by supporting 
high-level-language concepts with n- 
dimensional-grid nearest-neighbor com- 
munication. Thus, programmers can 
employ one-dimensional to sixteen- 
dimensional nearest-neighbor grid com- 
munication according to the requirements 
of the task. Manufacturing ease and relia- 
bility are enhanced because we removed 
the separate set of cables for the NEWS 
grid. 

CM-2 I/O structure. The Connection 
Machine I/O structure moves data into or 
out of the parallel-processing unit at 
aggregate peak rates as high as 320 mega- 
bytes per second using eight I/O con- 
trollers. All transfers are parity-checked 
on a byte-by-byte basis. 

A Connection Machine I/O bus runs 
from each I/O controller to the devices it 
controls. This bus is 80 bits wide (64 data 
bits, eight parity bits, and eight control 
bits). The I/O controller multiplexes and 
demultiplexes between 256-bit processor 
chunks and 64-bit l/O-bus chunks. The 
controller also acts as arbitrator, allocat- 
ing bus access to the various devices on the 
bus. 

DataVault. Since standard peripheral 
devices do not operate at the speeds that 
the CM system itself can sustain, we had 
to design a mass-storage system capable of 
operating at very high speed. The 
DataVault combines high reliability with 
fastitransfer rates for large blocks of data. 
It holds five gigabytes of data, expanda- 
ble to ten gigabytes, and transfers data at 
a rate of 40 megabytes per second. Eight, 
DataVaults, operating in parallel, offer a 
combined data transfer rate of 320 mega- 
bytes per second and hold up to 80 giga- 
bytes of data. 

The design philosophy followed for the 
Connection Machine architecture served 
for the DataVault as well: we used stan- 
dard technology in a parallel configura- 
tion. Each DataVault unit stores data 
spread across an array of 39 individual 
disk drives. Each 64-bit data chunk 
received from the Connection Machine 
I/O bus is split into two 32-bit words. 
After verifying parity, the DataVauIt con- 
troller adds seven bits of error-correcting 
code and stores the resulting 39 bits on 39 
individual drives. Subsequent failure of 
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Table 1. Example applications. 

Field Application 

Geophysics Modeling geological strata using reverse time 
migration techniques 

VLSI Design Circuit simulation and optimization of cell place- 
ment in standard cell or gate array circuits 

Particle Simulation N-body interactions, such as modeling defect 
movement in crystals under stress and modeling 
galaxy collisions 

Fluid-Flow Modeling Cellular autonoma and Navier-Stokes-based 
simulation, such as turbulance simulation in 
helicopter rotor-wake analysis and fluid flow 
through pipes 

Computer Vision Stereo matching, object recognition, and image 
processing 

Protein-Sequence Matching Large database searching for matching protein 
sequences 

Information Retrieval Document retrieval from large daiabases, analysis 
of English text, and memory-based reasoning 

Machine Learning Neural-net simulation, conceptual clustering, 
classifier systems, and genetic algorithms 

Computer Graphics Computer-generated graphics for animation and 
scientific visualization 

any one of the 39 drives does not impair 
reading of the data, since the ECC allows 
detection and correction of any single-bit 
error. 

Although operation is possible with a 
single failed drive, three spare drives can 
replace failed units until repaired. The 
ECC provides lOO-percent recovery of the 
data on the failed disk, allowing a new 
copy of this data to be reconstructed and 
written onto the replacement disk. Once 
this recovery is complete, the database is 
considered healed. This mass-storage sys- 
tem architecture leads to high transfer 
rates, reliability, and availability. 

and a high-resolution, 19-inch color mon- 
itor. The frame buffer is a single module 
that resides in the Connection Machine 
backplane in place of an I/O controller. 
This direct backplane connection allows 
the frame buffer to receive data from the 
Connection Machine processors at rates 
up to one gigabit per second. 

Graphics display. Visualization of scien- 
tific information is becoming increasingly 
important in areas such as modeling fluid 
flows or materials under stress. The enor- 
mous amount of information resulting 
from such simulations is often best com- 
municated to the user through high-speed 
graphic displays. We therefore designed a 
real-time, tightly coupled graphic display 
for the Connection Machine. This system 
consists of a 1,280 x 1,024-pixel frame- 
buffer module with 24-bit color and four 
overlays (with hardware pan and zoom) 

CM-2 engineering and physical charac- 
teristics. The cube-shaped Connection 
Machine measures 1.5 meters a side and is 
made up of eight subcubes. Each subcube 
contains 16 matrix boards, a sequencer 
board, and two I/O boards, arranged ver- 
tically. This vertical arrangement allows 
air cooling of the machine. Power dissipa- 
tion is 28 kilowatts. Each matrix board has 
512 processors and four megabytes of 
memory. The matrix board has 32 custom 
chips implementing the processors and 
router, 16 floating-point chips, 16 custom 
floating-point memory-interface chips, 
and 176 RAM chips. The nexus board 
occupies the space between the subcubes. 
Each front end has one front-end interface 
board. Red lights on the front and back, 
with one light for each CM chip (4,096 
altogether), assist troubleshooting. 
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Conservative engineering throughout 
ensures that the machine is manufactura- 
ble, maintainable, and reliable. The power 
of the machine arises from its novel archi- 
tecture rather than from exotic engineer- 
ing. It incorporates few types of boards; 
one board in particular-the matrix 
board-is replicated 128 times in a 64K 
machine. The matrix board is a lo-layer 
board with 9-mil trace widths. 

The chip technology is also current state 
of the art and conservative. The CM-l chip 
was implemented on a 10,000-gate, two- 
micron, complementary-metal-oxide- 
semiconductor gate array. The CM-2 chip 
is implemented on two-micron CMOS 
standard cells and has about 14,000 gate 
equivalents. 

The massive parallelism of the machine 
makes it possible to provide a particularly 
powerful and fast set of hardware diagnos- 
tics. For example, the entire memory 
(which accounts for a large percentage of 
the silicon area of the machine) can be 
tested in parallel. Diagnostics can isolate 
a failure to a particular chip or pair of 
chips and one wire connecting them more 
than 98 percent of the time. Diagnostics, 
in combination with the error-detection 
hardware on all data paths, leads to a relia- 
ble and maintainable system, with mean 
time to repair well under one hour. 

CM-2 performance. We can measure 
the Connection Machine’s performance in 
a number of ways. Since the machine uses 
bit-serial arithmetic, the speed of integer 
arithmetic and logical operations will vary 
with word length; the languages imple- 
mented on the machine take advantage of 
this and use small fields whenever possible. 
For example, 32-bit integer arithmetic and 
logical operations run at 2,500 million 
instructions per second, while eight-bit 
arithmetic runs at 4,000 MIPS. 

The speed of the machine also depends 
on how many processors take part in a par- 
ticular calculation, and on the virtual- 
processor ratio. In some cases, higher 
virtual-processor ratios lead to higher 
instruction rates because the physical 
processors are better utilized. 

Sustained floating-point performance 
has been shown to exceed 20 gigaflops (bil- 
lions of floating-point operations per sec- 
ond) for polynomial evaluation using 
32-bit floating-point-precision operands. 
When the function to be computed 
involves interprocessor communication 
such as a 4K x 4K-element matrix multi- 
ply, sustained performance typically 
exceeds five gigaflops. 
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We can express the performance of the 
Connection Machine communications sys- 
tems in either of two ways: bandwidth-or 
time per operation. Grid communications 
performance varies with the choice of grid 
dimensionality, grid shape, and virtual- 
processor ratio. A two-dimensional-grid 
Send operation takes about three microse- 
conds per bit. For 32-bit, two-dimensional 
grid operations, that translates into 96 
microseconds or 20 billion bits per second 
of communications bandwidth. 

Router communications performance is 
somewhat harder to measure because it 
depends on the complexity of the address- 
ing pattern in the message mix, and thus 
the number of message collisions. For a 
typical message mix, 32-bit general Send 
operations take about 600 microseconds. 
This translates into about three billion bits 
per second of communications bandwidth 
for typical message mixes (peak bandwidth 
exceeds 50 billion bits per second). 

The performance of the Connection 
Machine I/O system depends on the num- 
ber of channels in use. Each of up to eight 
I/O channels has a bandwidth of 40 mil- 
lion bytes per second, for a total band- 
width of 320 million bytes per second. This 
peak bandwidth has been observed on an 
installed DataVault disk system. The typi- 
cal sustained bandwidth on the DataVault 
is 210 million bytes per second, which 
makes it possible to copy the entire con- 
tents of the Connection Machine memory 
(512 megabytes) to disk in about 2.4 
seconds. 

The preceding discussions show that the 
Connection Machine achieves significant 
gains in performance over conventional 
computers through the use of a data- 
parallel model in a fine-grained, massively 
parallel architecture without using any 
exotic technology. But, how broadly 
applicable is this data-parallel model? In 
the remainder of this article, we will illus- 
trate the breadth of applications by 
describing a range of applications already 
developed on the Connection Machine. 

Applications of the 
Connection Machine 

Performance measures of massively 
parallel architectures tell only part of the 
story. One of the significant revelations 
that occurred with the introduction of the 
Connection Machine concerned the sur- 
prising number of different application 
areas suitable for this technology. 

. 

The general-purpose 
nature of the 

Connection Machine 
permits it to be 

applied equally well to 
numeric and 

symbolic processing. 

Although data-parallel programming 
requires a different approach towards 
computation, programm%rs quickly 
adapted. In fact, they often found that 
many systems are naturally expressed in a 
data-parallel programming model. Fears 
that parallel programming would require 
a massive reeducation effort proved 
unfounded. 

The partial list of applications given in 
Table 1 illustrates the range of applications 
developed for the Connection Machine. In 
general, most applications required less 
than a person-year of effort and were pro- 
totyped in a matter of months. The list 
includes examples from engineering, 
materials science, geophysics, artificial 
intelligence, document retrieval, and com- 
puter graphics. Far from being an archi- 
tecture designed for special domains, the 
general-purpose nature of the Connection 
Machine permits it to be applied equally 
well to numeric and symbolic processing. 

We include here discussions of three 
applications from the fields of VLSI 
design, materials science, and computer 
vision. These examples illustrate the use of 
parallelism in a range of areas and the role 
interprocessor communication plays in 
supporting the data-structure require- 
ments of each application. Grid-based 
communication finds primary application 
in regularly structured problems such as 
particle simulations, while general routing 
supports the differing topologies of circuit 
simulation and computer vision. 

Consult Waltz’ for detailed descrip- 
tions of several other applications. 

Molecular dynamics. Since the 196Os, 
materials science has been a key technol- 
ogy in designing jet-engine turbine blades 
and other high-technology products. To 

understand materials more fully, designers 
often perform simulation studies. Unfor- 
tunately, macro-level experiments, 
whether direct or computer-simulated, 
have not successfully explained important 
behaviors such as metal fatigue. That 
requires simulation at the molecular level. 
Here a major problem arises. Studies of 
perfect crystals generally offer little help 
in understanding real-world materials, as 
evidenced by the fact that the strengths 
predicted by such studies often exceed 
those measured in actual metals by twenty 
to fifty times. Defects in the crystalline 
structure alter its properties and dramati- 
cally increase the computational complex- 
ity of simulation studies. Often the 
interactions of ten thousand to one million 
atoms need to be simulated to accurately 
represent the real-world behavior of 
materials. 

Molecular-dynamics simulation is 
extremely computation-intensive, and the 
necessity of computing high-order interac- 
tions on systems of millions of particles 
poses major problems for conventional 
machines. Data-parallel architectures per- 
mit the investigator to see in minutes what 
would take hours on traditional hardware. 
The Connection Machine virtual- 
processor mechanism allows the investiga- 
tor to simulate systems many times larger 
than would a physical-processor system 
alone. 

A commonly used model for molecular 
dynamics uses the Lennard-Jones 6/12 
potential to describe the interactions 
between uncharged, nonbonded atoms. 
Two approaches permit the study of this 
behavior on the Connection Machine. In 
both cases, processors are assigned to indi- 
vid 

7 
particles. Each processor contains 

the x,y,z) position of the particle, the 
velocity, and the force on the particle from 
a previous time step of the simulation. All 
calculations are performed using 32-bit 
floating-point precision. 

In the first approach, we consider inter- 
actions between all particles. Particles are 
arbitrarily assigned to processors. The 
NEWS grid circulates the information 
about each particle throughout the CM 
such that each processor can compute the 
force its particle receives from every other 
particle in the system. All processors use 
the result of these forces to update their 
own (x,u,z) position in parallel. Depend- 
ing upon the purpose of the simulation, we 
might observe several hundred time steps. 
For large systems, each processor com- 
putes tens of thousands of force calcula- 
tions during a single time step. 
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Circuit Placement 

Figure 5. VLSI cell placement. Given an 
initial placement of cells, individual 
cells swap positions to reduce the total 
wire length. 

This approach makes no assumption 
about which particles lie near others and 
hence dominate the overall force calcula- 
tion. Dramatic improvements in execution 
time are possible if we know the location 
of nearby particles in advance. If we 
assume that the particles of the simulation 
have a regular structure and do not drift 
far from their initial relative positions (as 
in modeling solid-phase materials at low 
temperatures), we can take an alternative 
approach. 

In the second approach, particles are 
assigned to processors according to their 
spatial configuration. In a manner akin to 
convolution, nearest-neighbor communi- 
cation is used to calculate the forces from 
a surrounding K x K neighborhood of 
particles. Particles are free to drift, but we 
assume they stay roughly ordered relative 
to each other. Since the force calculation 
is dominated by these near neighbors, we 
can impose a cutoff in the force calcula- 
tion. We simply ignore interactions of dis- 
tant particles. 

Even in large-scale simulations, the 
number of near neighbors remains rela- 
tively small. Thus, we need to compute 
only a fraction of the total number of force 
calculations. As expected, this results in a 
significant reduction in the time required 
for simulation. Systems as large as a mil- 
lion molecules when tested showed sus- 
tained execution rates in excess of 2.6 
gigaflops. 

Researchers have applied this data- 
parallel approach to studying defect 
motion in two-dimensional crystals of 
16,384 atoms. They introduce stress by 
gradually shifting the top and bottom rows 
of atoms in opposite directions. They then 
observe the resulting movement, or perco- 
lation, of the defects. This work has con- 
tributed greatly to the study of 
stress-failure modes in various materials. 

VLSI design and circuit simulation. 
Computer-aided design tools are routinely 
used in VLSI design, but as the size of cir- 
cuits increases, two aspects of the design 
process become increasingly important 
and computationally expensive: cell place- 
ment and circuit simulation. 

Cellplacement. Semicustom VLSI cir- 
cuits with more than 10,000 cells or parts 
have become quite common. Placing this 
number of parts on a chip while simultane- 
ously minimizing the area taken up by 
interconnecting wire has proved a difficult 
and time-consuming problem. Minimiza- 
tion of area occupied is important because 
in general the smaller the area, the higher 
the expected yield. Designers have applied 
various automated methods to this prob- 
lem. One method, employing simulated 
annealing,9 produces good optimization 
results on a broad spectrum of placement 
problems. Unfortunately, for circuits hav- 
ing 15,000 parts, simulated annealing may 
require 100 to 360 hours on a conventional 
computer. On a 64K-processor Connec- 
tion Machine, the time required reduces to 
less than two hours. 

Simulated annealing is an optimization 
procedure related to an analogous process 
in materials science wherein the strength of 
a metal is improved by first raising it to a 
high temperature and then allowing it to 
cool slowly. When the metal is hot, the 
energy associated with its molecules causes 
them to roam widely. As the metal cools, 
molecules lose their energy and become 
more restricted in their movements, set- 
tling into a compact, stable configuration. 
This general optimization procedure, 
already applied to a variety of problems, 
supports parallel implementation. 

Designers apply simulated annealing to 
VLSl placement in the following way. 
Given an initial arbitrary placement of 
cells for a VLSI circuit, the designer first 
computes the size of the silicon chip 
required. Improvement in the layout 
results from swapping cells to reduce the 
total wire length (see Figure 5). If the only 

exchanges permitted are those that reduce 
total wire length, the placement pattern 
would seek a local minimum-not neces- 
sarily optimal. 

Simulated annealing, however, accepts 
a certain percentage of “bad” moves in 
order to expose potentially better solu- 
tions, avoiding the classic trap of local 
minimums. The percentage of such “bad” 
moves the system will accept is governed 
by a parameter usually expressed as a tem- 
perature. Starting with a high tempera- 
ture, a large number of cells are permitted 
to change position over great distances. 
Gradually, the temperature parameter is 
lowered, restricting the movement of cells 
and the number of exchanges. Ultimately, 
the system converges to a near-optimal 
solution as only nearby “good” exchanges 
are permitted. 

Implementation of simulated annealing 
in parallel on the Connection Machine is 
straightforward. Individual cells, potential 
locations for cells, and nodes where wires 
between cells connect are represented in 
individual processors. The need to 
exchange information between cells at 
arbitrary locations illustrates the utility of 
the general router-based communications 
mechanism of the Connection Machine. 

Simulated annealing takes place as fol- 
lows. According to the given temperature 
parameter, a certain percentage of cells 
initiate a swap, calculate the expected 
change in wire length, and accept or reject 
the move. Potential exchanges are chosen 
by randomly generating the addresses of 
other cells. (Exchanges in general are not 
independent when performed in parallel, 
so restrictions on cell movements are 
enforced to ensure the consistency of the 
oell rearrangement.) This process repeats 
as the temperature parameter slowly 
lowers, restricting cell movement until the 
solution is acceptable to the designer. 

Circuit simulation. A second area of 
importance to the electronics industry is 
VLSI circuit simulation. Unfortunately, 
our ability to simulate large circuits has not 
kept pace with the increasing number of 
components. Again, this results from the 
computation-intensive nature of simula- 
tion. Consequently, often only circuits 
with several hundred transistors are simu- 
lated at a time. Just as computer-aided 
design tools have become essential for suc- 
cessful implementation of VLSI, designers 
need simulation at the level of analog 
waveforms to verify circuit design. 

Real circuits operate according to the 
characteristics of each component and 
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Figure 6. Simulation output of VLSI circuit. Waveforms from multiple probe points are displayed for a given input. 

through enforcement of Kirchoff’s law, 
which states that at each node the current 
entering the node is exactly balanced by the 
current leaving the node. In computer 
simulation, this leads to the application of 
an iterative relaxation method at each time 
step, which brings the circuit into 
equilibrium. 

A Gauss-Jacobi relaxation algorithm 
for solving a system of nonlinear differen- 
tial equations has been employed to simu- 
late VLSI circuits.” As implemented on a 
Connection Machine, individual compo- 
nents (such as transistors, resistors, or 
capacitors) and nodes are each assigned to 
individual processors. Pointers express the 
connectivity of the circuit. During simula- 
tion, the pattern of communication 
directly reflects the topology of the circuit. 
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A simulation time step starts with all 
nodes sending their voltages to the termi- 
nals of the components to which they con- 
nect. In the initial time step, we know only 
the potentials at the power supply and 
ground nodes (others are assumed zero). 
Each element computes its response and 
sends this information back to connecting 
nodes. Each node processor checks to see 
if all currents balance. If so. the time step 
is complete; otherwise, each node,proces- 
sor updates its expected potential accord- 
ing to the relaxation rule, and the cycle 
repeats. In practice, each time step typi- 
cally requires three to four iterations and 
accounts for one-tenth of a nanosecond 
simulated time. Figure 6 shows a typical 
simulation. 

Because all operations take place in par- 

allel, simulations of circuits with more 
than 10,000 devices can run in a few 
minutes on a 64K-processor Connection 
Machine. Simulations of circuits having 
more than 100,000 transistors have run in 
less than three hours. 

Computer vision. Problems in com- 
puter vision pose a major challenge for 
today’s systems not only because the prob- 
lem is large (256K pixels in a typical video 
image), but also because we need a variety 
of data structures to meet the differing 
representational requirements of vision. 
We can easily see how to apply massively- 
parallel systems to pixel-level image pro- 
cessing, but it is often less clear how par- 
allelism applies to higher-level concerns, as 
in the recognition of objects in a scene. 
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Figure 7. Using a stereo pair of left and right terrain images, the system corrects for 
any geometric distortions, detects edge points, computes elevations, and generates 
a contour map for the given terrain. 

1 Model: A 

S) 

4 

Figure 8. Parallel object-recognition steps. 
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Therefore, we show here two examples in 
computer vision: production of a depth 
map from stereo images, and two- 
dimensional-object recognition. 

Depth map from binocular stereo. 
Binocular stereo is a method for determin- 
ing three-dimensional distances based on 
comparisons between two different views 
of the same scene. It is used by biological 
and machine vision systems alike. Drum- 
heller and Poggio” have implemented a 
program that solves this problem in near- 
real time and illustrates aspects of per- 
forming image analysis on the Connection 
Machine. 

Given a stereo image pair, the program 
produces a depth map expressed in the 
form of a topographic display. First, two 
images (left and right) are digitized and 
loaded into the Connection Machine, with 
pixel pairs from right and left images 
assigned to individual processors. Next, a 
difference-of-Gaussians filter is applied to 
each image to detect edge points, which 
form the primitive tokens to be matched 
in the two images. All pixels perform this 
difference-of-Gaussians convolution in 
parallel. 

To determine the disparity of features 
between left and right images, the Connec- 
tion Machine system performs a local 
cross-correlation between the two images. 
It slides the right image over the left using 
NEWS communications. At a given rela- 
tive shift, the two edge-point patterns are 
ANDed in parallel, producing a new image 
that has the Boolean value t only at points 
where the left and right images both con- 
tain an edge. 

Then each processor counts the number 
dFt’s in a small neighborhood, effectively 
computing the degree of local correlation 
at each point. This occurs at several rela- 
tive shifts, with each processor keeping a 
record of the correlation score for each 
shift. 

Finally, each processor selects the shift 
(disparity) at which the maximum corre- 
lation took place. 

Since the above process determines dis- 
parity (and distance) only at edge pixels, 
we must “fill in” the non-edge pixels by 
interpolation using a two-dimensional 
heat-diffusion model. The resulting depth 
map is displayed either as a gray-scale 
image with density as a function of height 
from the surface, or in standard topology 
map format. The entire process, from 
loading in a pair of 256 x 256-pixel stereo 
images to production of a contour map, 
completes in less than two seconds on a 
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Figure 9. Object recognition example showing original image (a), feature extraction (b), hypothesis generation (c), and recogni- 
tion and labeling of objects (d). ri 

64K-processor Connection Machine (see 
Figure 7). 

Object recognition. Recognition of 
objects in natural scenes remains an 
unsolved problem in computer science 
despite attracting research interest for 
many years. It is important in many appli- 
cations, including robotics, automated 
inspection, and aerial photo- 
interpretation. 

In contrast to many of the systems 
designed to date, the object-recognition 
system described in this sectioh was 
designed to work with object databases 
containing hundreds of models and to 
search each scene in parallel for instances 
of each model object.” While this system 
is limited to recognition of two- 

dimensional objects having rigid shapes, 
it is being extended to the three- 
dimensional object domain. 

The general framework for the 
approach taken here is massive parallel 
hypothesis generation and test. Whereas 
object-recognition algorithms tradition- 
ally use some form of constraint-based tree 
search, here searching is effectively 
replaced by hypothesis generation and 
parameter space clustering. In this scheme, 
image features in the scene serve as events, 
while features of each model serve as 
expectations waiting to be satisfied. 
Hypotheses arise whenever an event satis- 
fies an expectation. 

On the Connection Machine, objects 
known to the system are represented sim- 
ply as a collection of features-generally 

straight line-segments and their intersec- 
tions at corners. Each feature is assigned 
to its own processor. A single object is 
therefore distributed over a number of 
processors, enabling each feature to 
actively participate in the solution. 

Features useful for hypothesis genera- 
tion are those that constrain the position 
and orientation of a matching model 
object. A single point, line, or patch of 
color is by itself not sufficient. In a two- 
dimensional world, however, the intersec- 
tion of two lines that matches an expected 
model corner can be used to generate a 
hypothesis that an instance of the model 
object exists-albeit translated and rotated 
such that the corresponding features come 
into alignment. 

Figure 8 illustrates this parallel hypoth- 
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esis generation and verification method. 
An unknown scene is first digitized and 
loaded into the Connection Machine mem- 
ory as an array of pixels, one per proces- 
sor. Edge points are marked and straight 
line segments are fitted to edge points 
using a least-squares estimate. Intersecting 
lines are grouped into corner features and 
matched in parallel with corresponding 
corner features in the model database. 

Whenever a match between an image 
and model feature occurs, a hypothetical 
instance of the corresponding model 
object is created and projected into the 
image plane. A hypothesis-clustering 
scheme, related to the Hough transform, 
is next applied to order hypotheses accord- 
ing to the support offered by mutuahy sup- 
porting hypotheses. Although this still 
leaves many possible interpretations for 
each image feature, the Connection 
Machine can quickly accept or reject thou- 
sands of hypotheses in parallel using a 
template-like verification step. 

Verification results from having each 
instance check the image for evidence sup- 
porting each of its features in parallel. 
Hypotheses having strong support for 
their expected features are accepted over 
those with little support. Expected features 
of an object that are occluded or obscured 
in the scene do not rule out the hypothe- 
sis, they only weaken the confidence the 
system has in the object’s existence. Com- 
petitive matching between instances for 
each image feature finally resolves any 
conflicts that arise in the overall scene 
interpretation. Results appear in Figure 9. 

The time required from initial image 
acquisition to display of recognized 
objects is approximately six seconds on a 
64K-processor Connection Machine. 
Experiments have shown this time to be 
constant over a range of object database 
sizes from 10 to 100. We expect optimiza- 
tion of this task to reduce the time to less 
than one second. 

T he Connection Machine 
represents an exciting approach to 
dealing with the large and com- 

plex problems that a growing number of 
people wish to solve with computer sys- 
tems. The size of problems has grown at a 
rate faster than improvements in technol- 
ogy, forcing us to find innovative ways of 
using current technology to achieve quan- 
tum leaps in performance. 

We have described the architecture and 
evolution of the Connection Machine, 
which directly implements a data-parallel 

model in hardware and software. From the 
applications described here and elsewhere, 
it seems clear to us that data-level parallel- 
ism has broad applicability. We expect 
that its applicability will continue to grow 
as people continue to require solutions to 
larger and more complex problems. 0 
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