
Architecture and
Applications of the

Connection Machine

Lewis W. Tucker and George G. Robertson

A s the use of computers affects
increasingly broader segments of
the world economy, many of the

problems to which people apply com-
puters grow continually larger and more
complex. Demands for faster and larger
computer systems increase steadily. For-
tunately, the technology base for the last
twenty years has continued to improve at
a steady rate-increasing in capacity and
speed while decreasing in cost for perfor-
mance. However, the demands outpace
the technology. This raises the question,
can we make a quantum leap in perfor-
mance while the rate of technology
improvement remains relatively constant?

Computer architects have followed two
general approaches in response to this
question. The first uses exotic technology
in a fairly conventional serial computer
architecture. This approach suffers from
manufacturing and maintenance problems
and high costs. The second approach
exploits the parallelism inherent in many
problems. The parallel approach seems to
offer the best long-term strategy because,
as the problems grow, more and more
opportunities arise to exploit the parallel-
ism inherent in the data itself.

Where do we find the inherent parallel-
ism and how do we exploit it? Most com-
puter programs consist of a control
sequence (the instructions) and a collection
of data elements. Large programs have
tens of thousands of instructions operat-

26

Thinking Machines Corp.

Massively parallel
computer architectures
have come of age. We

describe here the
architecture, evolution,

and applications of
the Connection

Machine system.

ing on tens of thousands or even millions
of data elements. We can find opportuni-
ties for parallelism in both the control
sequence and in the collection of data
elements.

In the control sequence, we can identify
threads of control that could operate
independently, thus on different proces-
sors. This approach, known as control
parallelism, is used for programming most
multiprocessor computers. The primary
problems with this approach are the diffi-

0018.9l62/88/08~-~26so1.00 @I988 IEEE

culty of identifying and synchronizing
these independent threads of control.

Alternatively, we can take advantage of
the large number of independent data ele-
ments by assigning one processor to each
data element and performing all opera-
tions on the data in parallel. This
approach, known as data parallelism,’
works best for large amounts of data. For
many applications, it proves the most nat-
ural programming approach, leading to
significant decreases in execution time as
well as simplified programming.

Massively parallel architectures contain-
ing tens of thousands or even millions of
processing elements support this “data-
parallel” programming model. Early
examples of this kind of architecture are
ICL’s Distributed Array Processor
(DAP),’ Goodyear’s Massively Parallel
Processor (MPP),3 Columbia Univer-
sity’s Non-Von,4 and others.’ Each of
these machines has some elements of the
desired architecture, but lacks others. For
example, the MPP has 16K (K = 1,024)
processing elements arranged in a two-
dimensional grid, but interprocessor com-
munication is supported only between
neighboring processors.

The Connection Machine provides 64K
physical processing elements, millions of
virtual processing elements with its virtual
processor mechanism, and general-
purpose, reconfigurable communications
networks. The Connection Machine

COMPUTER

Connection Machine
Parallel Processor Unit

16,364 PrOCeSSOrS * equence -a 0

Connection Machine

16,364 Pr--rs

c equence e 3

equence P- 2 l

1 Coj?“tc+n Machine 1
1 16,384processors 1 1 l6.384processors 1

I Connection Machine l/O System I

Front end 0 I c (DECVM Or
Symbolics)

1 Bus interface 1

Front end 1
(DECV~ or
Symbolics)

- Bus interfece

Figure 1. Connection Machine system organization.

encompasses a fully integrated architec-
ture designed for data-parallel computing.

Architecture of the
Connection Machine

four sequencers. Each sequencer controls
up to 16,384 individual processors execut-
ing parallel operations. A high-
performance, data-parallel l/O system
(bottom of Figure 1) connects processors
to peripheral mass storage (the DataVault)
and graphic display devices.

The Connection Machine is a data- System software is based upon the oper-
parallel computing system with integrated ating system or environment of the front-
hardware and software. Figure 1 shows the end computer, with minimal visible soft-
hardware elements of the system. One to ware extensions. Users can program using
four front-end computer systems (right familiar languages and programming con-
side of Figure 1) provide the development structs, with all development tools
and execution environments for system provided by the front end. Programs have
software. They connect through the nexus normal sequential control flow and do not
(a 4 x 4 cross-point switch) to from one to need new synchronization structures.

August 1988

Thus, users can easily develop programs
that exploit the power of the Connection
Machine hardware.

At the heart of the Connection Machine
system lies the parallel-processing unit
consisting of thousands of processors (up
to 64K), each with thousands of bits of
memory (four kilobits on the CM- 1 and 64
kilobits on the CM-2). As well as process-
ing the data stored in memory, these
processors when logically interconnected
can exchange information. All operations
happen in parallel on all processors. Thus,
the Connection Machine hardware directly
supports the data-parallel programming
model.

27

Figure 2. CM-1 data processors.

Figure 3. Complex problems change topology.

CM-l: First implementation of CM in 1980 at the MIT AI Laboratory, where
concept. Hillis originally conceived the the basic architectural design and proto-
Connection Machine architecture while at type custom integrated circuits were devel-
MIT and described it in his thesis.6 The oped. It became clear that private
design of the Connection Machine began enterprise would have to get involved to

28

actually build the machine, so Thinking
Machines was founded in 1983.

The Connection Machine Model CM-l
was designed at Thinking Machines dur-
ing 1983 and the first half of 1984. By the
end of 1984, with funding from the
Defense Advanced Research Projects
Agency, Thinking Machines had built the
first 16K-processor CM-l prototype. A
demonstration of its capabilities took
place in May 1985, and by November the
company had constructed and successfully
demonstrated a full 64K-processor
machine. Thinking Machines commer-
cially introduced the machine in April
1986. The first machines went to MIT and
Perkin-Elmer in the summer of 1986.

As illustrated in Figure 1, the CM-l con-
tains the following system components:

l up to 64K data processors,
l an interprocessor communications

network,
l one to four sequencers, and
l one to four front-end computer

interfaces.
Although part of the original Connec-

tion Machine design, the I/O system was
not implemented until the introduction of
the CM-2.

CM-1 data processors and memory. The
CM-1 parallel-processing unit contains
from 16K to 64K data processors. As
shown in Figure 2, each data processor
contains

l an arithmetic-logic unit and
associated latches,

l four kilobits of bit-addressable
memory,

l eight one-bit flag registers,
I l a router interface, and

l a two-dimensional-grid interface.
The data processors are implemented

using two chip types. A proprietary cus-
tom chip contains the ALU, flag bits, and
communications interface for 16 data
processors. Memory consists of commer-
cial static RAM chips, with parity protec-
tion. A fully configured parallel-processing
unit contains 64K data processors, consist-
ing of 4,096 processor chips and 32 mega-
bytes of RAM.

A CM-l ALU consists of a three-input,
two-output logic element and associated
latches and memory interface (see Figure
2). The basic conceptual ALU cycle first
reads two data bits from memory and one
data bit from a flag. The logic element then
computes two result bits from the three
input bits. Finally, one of the two results
is stored in memory and the other result,

COMPUTER

in a flag. The entire operation is condi-
tional on the value of a context flag; if the
flag is zero, then the results for that data
processor are not stored.

The logic element can compute any two
Boolean functions on three inputs. This
simple ALU suffices to carry out all the
operations of a virtual-machine instruc-
tion set. Arithmetic is carried out in a bit-
serial fashion, requiring 0.75 microsecond
per bit plus instruction decoding and over-
head. Hence, a 32-bit Add takes about 24
microseconds. With 64K processors com-
puting in parallel, this yields an aggregate
rate of 2,000 million instructions per sec-
ond (that is, two billion 32-bit Adds per
second).

The CM processing element is a
reduced-instruction-set-computer proces-
sor. Each ALU cycle breaks down into
subcycles. On each cycle, data processors
execute one low-level instruction (called a
nanoinstruction) issued by the sequencer,
while the memories can perform one read
or write operation. The basic ALU cycle
for a two-operand integer Add consists of
three nanoinstructions: LoadA to read
memory operand A, LoadB to read mem-
ory operand B, and Store to store the result
of the ALU operation. Other nanoinstruc-
tions direct the router and NEWS (north-
east-west-south) grid, and perform diag-
nostic functions.

CM-I communications. Algorithm
designers typically use data structuring
techniques to express important relation-
ships between data elements. For example,
an image-understanding system usually
employs a two-dimensional grid to repre-
sent the individual pixels of the image. At
a later stage in the processing, however, a
tree data structure or relational graph
might represent more abstract relation-
ships such as those between objects and
their parts (see Figure 3).

On a serial machine with sufficient ran-
dom access memory, pointers to memory
elements are used to implement complex
data structures. In a data-parallel architec-
ture, however, individual data elements
are assigned to individual processors and
interprocessor communication expresses
the relationships between the elements of
very large data structures.

The CM-l was designed with flexible
interprocessor communication in mind
and supports several distinct communica-
tion mechanisms:

l Broadcast communications allow
immediate data to be broadcast from the

August 1988

The CM-1 was
designed with flexible

interprocessor
communication

in m ind.

front-end computer or the sequencer to all
data processors at once.

l Global OR is a logicaM)R of the ALU
carry output from all data processors,
which makes it possible to quickly discover
unusual or termination conditions.

l Hypercube communication forms the
basis for the router and numerous paral-
lel primitives supported by the virtual-
machine model. The topology of the net-
work consists of a Boolean n-cube. For a
fully configured CM- 1, the network is a
1Zcube connecting 4,096 processor chips
(that is, each ldprocessor chip lies at the
vertex of a 12-c&e). An example of a par-
allel primitive implemented with the
Hypercube is Sort, which runs in logarith-
mic time; sorting 64K 32-bit keys takes
about 30 milliseconds.

l The router directly implements
general pointer following with switched
message packets containing processor
addresses (the pointers) and data. The
router controller, implemented in the CM
processor chips, uses the Hypercube for
data transmission. It provides heavily
overlapped, pipelined message switching
with routing decisions, buffering, and
combining of messages directed to the
same address, all implemented in
hardware.

l The NEWS grid is a two-dimensional
Cartesian grid that provides a direct way
to perform nearest-neighbor communica-
tion. Since all processors communicate in
the same direction (north, east, west, or
south), addresses are implicit and no col-
lisions occur, making NEWS communica-
tion much faster (by about a factor of six)
than router communication for simple
regular message patterns.

CM-I sequencer, nexus, andfront-end
interface. The CM-I sequencer-a spe-

cially designed microcomputer used to
implement the CM virtual machine-is
implemented as an Advanced Micro
Devices 2901/2910 bit-sliced machine with
16K 96-bit words of microcode storage. A
Connection Machine contains from one to
four sequencers. The sequencer’s input is
a stream of high-level, virtual-machine
instructions and arguments, transmitted
on a synchronous 32-bit parallel data path
from the nexus. The sequencer outputs a
stream of nanoinstructions that controls
the timing and operation of the CM data
processors and memory.

The CM-1 nexus-a 4 x 4 cross-point
switch-connects from one to four front-
end computers to from one to four
sequencers. The connections to front-end
computers are via high-speed, 32-bit, par-
allel, asynchronous data paths; while the
connections to sequencers are syn-
chronous. The nexus provides a partition-
ing mechanism so that the CM can be
configured as up to four partitions under
front-end control. This allows isolation of
parts of the machine for different users or
purposes (such as diagnosis and repair of
a failure in one partition while other par-
titions continue to run). When more than
one sequencer is connected to the same
front-end through the nexus, they are syn-
chronized by a common clock generated
by the nexus.

The front-end bus interface supports a
32-bit, parallel, asynchronous data path
between the front-end computer and the
nexus. The FEBI is the only part of the
CM-1 that lies outside of the main cabinet.
It resides as a board in the system bus of
the front end (any DEC VAX containing
a VAXBI I/O bus and running Ultrix, or
a@Symbolics 3600 series Lisp machine).

CM virtual-machine model. The CM
virtual-machine parallel instruction set,
called Paris, presents the user with an
abstract machine architecture very much
like the physical Connection Machine
hardware architecture, but with two
important extensions: a much richer
instruction set and a virtual-processor
abstraction.

Paris. Paris provides a rich set of paral-
lel primitives ranging from simple arith-
metic and logical operations to high-level
APL-like reduction (parallel prefix) oper-
ations,’ sorting, and communications
operations. The interface to Paris between
the front end and the rest of the Connec-
tion Machine reduces to a simple stream of
operation codes and arguments. The argu-

29

Figure 4. Connection Machine Model CM-2 and DataVault.

ments usually describe fields to operate on,
in the form of a start address and bit
length. Arguments can also be immediate
data, broadcast to all data processors.

Most of Paris is implemented in firm-
ware and runs on the sequencers, where
the opcode/argument stream is parsed and
expanded to the appropriate sequence of
nanoinstructions for the data processors.
Since Paris defines the virtual-machine
instruction set, we use the same name for
the assembly language of the Connection
Machine.

Virtualprocessors. Data-parallel appli-
cations often call for many more individ-
ual processors than are physically available
on a given machine. Connection Machine
software provides for this through its
virtual-processor mechanism, supported
at the Paris level and transparent to the
user. When we initialize the Connection
Machine system, the number of virtual
processors required by the application is
specified. If this number exceeds the num-
ber of available physical processors, the
local memory of each processor splits into
as many regions as necessary, with the
processors automatically time-sliced
among the regions.

For example, if an application needed to
process a million pieces of data, it would

30

request V = 2*’ virtual processors.
Assume the available hardware to have
P =216 physical processors, each with
M = 216 bits of memory (the size for CM-2
memory; M = 2’* bits of memory for the
CM-l). Then each physical processor
would support V/P = 16 virtual
processors.

This ratio V/P, usually denoted N, is
called the virtual-processor ratio, or VP-
ratio. In this example, each virtual proces-
sor would have M/N = 2’* bits of mem-
ory and would appear to execute code at
about l/N = l/16 the speed of a physical
processor. In fact, virtual processors often
exceed this execution rate, since instruc-
tion decoding by the sequencer can be
amortized over the number of virtual
processors.

CM software environment. The Con-
nection Machine system software uses
existing programming languages and envi-
ronments as much as possible. Languages
are based on well-known standards. Min-
imal extensions support data-parallel con-
structs so that users need not learn a new
programming style. The Connection
Machine front-end operating system
(either Unix or Lisp) remains largely
unchanged.

Fortran on the Connection Machine

system uses the array extensions in the
draft Fortran 8x standard (proposed by
American National Standards Institute
Technical Committee X3J3) to express
data-parallel operations. The remainder of
the language is the standard Fortran 77.
No extension is specific to the Connection
Machine; the Fortran 8x array extensions
map naturally onto the underlying data-
parallel hardware.

The *Lisp and CM-Lisp languages are
data-parallel dialects of Common Lisp (a
version of Lisp currently being stan-
dardized by ANSI Technical Committee
X3J13). *Lisp gives programmers fine
control over the CM hardware while main-
taining the flexibility of Lisp. CM-Lisp is
a higher-level language that adds small
syntactic changes to the language interface
and creates a powerful data-parallel pro-
gramming language.

The C * language is a data-parallel exten-
sion of the C programming language (as
described in the draft C standard proposed
by ANSI Technical Committee X3Jll).
C * programs can be read and written like
serial C programs. The extensions are
unobtrusive and easy to learn.

The assembly language of the Connec-
tion Machine, Paris, is the target language
of the high-level-language compilers. Paris
logically extends the instruction set of the
front end and masks the physical imple-
mentation of the CM processing unit.

Evolution of the CM-2. Experience
gained during the first year of in-house use
of the CM- 1 led to the initiation of a proj-
ect to build an improved version of the
machine: the Connection Machine Model
CM-2.

The design team established several
goals for the CM-2: increasing memory
capacity, performance, and overall relia-
bility while maintaining or improving ease
of manufacturing. To continue to support
the CM-I customer base, the designers
wanted the CM-2 to be program compat-
ible with the previous machine. Finally,
the designers wanted the CM-2 to incor-
porate a high-speed I/O system for
peripheral data storage and display
devices.

To satisfy these goals, CM-2 kept the
basic architecture of the CM-I (see Figure
1). To increase performance, the CM-2
incorporates a redesigned sequencer and
CM processor chip and an optional
floating-point accelerator. A four-fold
increase in microcode storage in the
sequencer allowed for improvements in
performance and functionality in the

COMPUTER

virtual-machine implementation. A
sixteen-fold increase in memory capacity
brought total memory capacity up to 512
megabytes. Enhanced reliability resulted
from adding error correction to the mem-
ory system, and diagnostic capability was
improved by increasing the number of
data paths with error detection (parity). A
redesigned NEWS grid increased function-
ality and ease of manufacture. CM-2
implemented an I/O system to support a
massively parallel disk system (called the
DataVault) and a high-speed color
graphics system.

The CM processor chip underwent rede-
sign in late 1985 and early 1986. The first
prototype of the CM-2 was working by the
end of I986. The company commercially
introduced the CM-2 (see Figure 4) in April
1987, and delivered about a dozen
machines to customers in the fall of 1987.
The first DataVault was delivered at the
end of 1987.

CM-2 data processors and memory. The
CM-2 data processor strongly resembles
the CM-l data processor. The major
differences are

l 64 kilobits of bit-addressable memory
instead of four kilobits,

l four one-bit flag registers instead of
eight,

l an optional floating-point accelerator,
l a generalized NEWS-grid interface to

support n-dimensional grids,
l an I/O interface, and
l increased error-detection circuitry.
The CM-2 data processors are imple-

mented using four chip types. A proprie-
tary custom chip contains the ALU, flag
bits, router interface, NEWS-grid inter-
face, and I/O interface for 16 data proces-
sors, and part of the Hypercube network
controller. The memory consists of com-
mercial dynamic RAM chips, with single-
bit error correction and double-bit error
detection. The floating-point accelerator
consists of a custom floating-point inter-
face chip and a floating-point execution
chip; one of each is required for every 32
data processors. A fully configured 64K-
processor system contains 4,096 processor
chips, 2,048 floating-point interface chips,
2,048 floating-point execution chips, and
half a gigabyte of RAM.

CM-2 floating-point accelerator. In
addition to the bit-serial data processors
described above, the CM-2 parallel-
processing unit has an optional floating-
point accelerator closely integrated with
the processing unit. This accelerator has

The DataVault
combines high

reliability with fast
transfer rates for large

blocks of data.

two options: single precision or double
precision. Both options support IEEE
standard floating-point formats and oper-
ations, and increase the rate of floating-
point calculations by a factor of more than
20. Taking advantage qf this speed
increase requires no change in user
software.

The hardware associated with each of
these options consists of two special-
purpose very-large-scale-integration chips:
a memory-interface unit and a floating-
point execution unit for each pair of CM-2
processor chips. Because the floating-
point units access memory in an
orthogonal manner to the CM-2 proces-
sors, the memory-interface unit transposes
32-bit words before passing them to the
floating-point unit.

Firmware that drives the floating-point
accelerator stages the data through the
memory-interface unit to the floating-
point execution unit. In general, it takes
5 N stages to implement a floating-point
operation, for a virtual-processor ratio of
N. However, the firmware is pipelined so
as to require only 3 N + 2 stages instead of
5 N stages.

CM-2 communications. The CM-2
communications are basically the same as
those of the CM-I with two exceptions.
First, we redesigned the router to improve
reliability, diagnostic capability, and per-
formance. For example, we enhanced its
performance by providing hardware for
en route combining of messages directed
to the same destination. The combining
operations supported include Sum, Logi-
cal OR, Overwrite, Max, and Min.

The second major difference lies in the
nature of grid communications. We com-
pletely redesigned grid communications
for the CM-2. We wanted to increase flex-
ibility and functionality while simplifying
the overall system architecture and
increasing manufacturing ease and relia-

bility. We accomplished this by replacing
the two-dimensional NEWS grid with a
more general n-dimensional grid imple-
mented on top of the Hypercube (by grey-
encoding addresses). We enhanced flexi-
bility and functionality by supporting
high-level-language concepts with n-
dimensional-grid nearest-neighbor com-
munication. Thus, programmers can
employ one-dimensional to sixteen-
dimensional nearest-neighbor grid com-
munication according to the requirements
of the task. Manufacturing ease and relia-
bility are enhanced because we removed
the separate set of cables for the NEWS
grid.

CM-2 I/O structure. The Connection
Machine I/O structure moves data into or
out of the parallel-processing unit at
aggregate peak rates as high as 320 mega-
bytes per second using eight I/O con-
trollers. All transfers are parity-checked
on a byte-by-byte basis.

A Connection Machine I/O bus runs
from each I/O controller to the devices it
controls. This bus is 80 bits wide (64 data
bits, eight parity bits, and eight control
bits). The I/O controller multiplexes and
demultiplexes between 256-bit processor
chunks and 64-bit l/O-bus chunks. The
controller also acts as arbitrator, allocat-
ing bus access to the various devices on the
bus.

DataVault. Since standard peripheral
devices do not operate at the speeds that
the CM system itself can sustain, we had
to design a mass-storage system capable of
operating at very high speed. The
DataVault combines high reliability with
fastitransfer rates for large blocks of data.
It holds five gigabytes of data, expanda-
ble to ten gigabytes, and transfers data at
a rate of 40 megabytes per second. Eight,
DataVaults, operating in parallel, offer a
combined data transfer rate of 320 mega-
bytes per second and hold up to 80 giga-
bytes of data.

The design philosophy followed for the
Connection Machine architecture served
for the DataVault as well: we used stan-
dard technology in a parallel configura-
tion. Each DataVault unit stores data
spread across an array of 39 individual
disk drives. Each 64-bit data chunk
received from the Connection Machine
I/O bus is split into two 32-bit words.
After verifying parity, the DataVauIt con-
troller adds seven bits of error-correcting
code and stores the resulting 39 bits on 39
individual drives. Subsequent failure of

August 1988 31

Table 1. Example applications.

Field Application

Geophysics Modeling geological strata using reverse time
migration techniques

VLSI Design Circuit simulation and optimization of cell place-
ment in standard cell or gate array circuits

Particle Simulation N-body interactions, such as modeling defect
movement in crystals under stress and modeling
galaxy collisions

Fluid-Flow Modeling Cellular autonoma and Navier-Stokes-based
simulation, such as turbulance simulation in
helicopter rotor-wake analysis and fluid flow
through pipes

Computer Vision Stereo matching, object recognition, and image
processing

Protein-Sequence Matching Large database searching for matching protein
sequences

Information Retrieval Document retrieval from large daiabases, analysis
of English text, and memory-based reasoning

Machine Learning Neural-net simulation, conceptual clustering,
classifier systems, and genetic algorithms

Computer Graphics Computer-generated graphics for animation and
scientific visualization

any one of the 39 drives does not impair
reading of the data, since the ECC allows
detection and correction of any single-bit
error.

Although operation is possible with a
single failed drive, three spare drives can
replace failed units until repaired. The
ECC provides lOO-percent recovery of the
data on the failed disk, allowing a new
copy of this data to be reconstructed and
written onto the replacement disk. Once
this recovery is complete, the database is
considered healed. This mass-storage sys-
tem architecture leads to high transfer
rates, reliability, and availability.

and a high-resolution, 19-inch color mon-
itor. The frame buffer is a single module
that resides in the Connection Machine
backplane in place of an I/O controller.
This direct backplane connection allows
the frame buffer to receive data from the
Connection Machine processors at rates
up to one gigabit per second.

Graphics display. Visualization of scien-
tific information is becoming increasingly
important in areas such as modeling fluid
flows or materials under stress. The enor-
mous amount of information resulting
from such simulations is often best com-
municated to the user through high-speed
graphic displays. We therefore designed a
real-time, tightly coupled graphic display
for the Connection Machine. This system
consists of a 1,280 x 1,024-pixel frame-
buffer module with 24-bit color and four
overlays (with hardware pan and zoom)

CM-2 engineering and physical charac-
teristics. The cube-shaped Connection
Machine measures 1.5 meters a side and is
made up of eight subcubes. Each subcube
contains 16 matrix boards, a sequencer
board, and two I/O boards, arranged ver-
tically. This vertical arrangement allows
air cooling of the machine. Power dissipa-
tion is 28 kilowatts. Each matrix board has
512 processors and four megabytes of
memory. The matrix board has 32 custom
chips implementing the processors and
router, 16 floating-point chips, 16 custom
floating-point memory-interface chips,
and 176 RAM chips. The nexus board
occupies the space between the subcubes.
Each front end has one front-end interface
board. Red lights on the front and back,
with one light for each CM chip (4,096
altogether), assist troubleshooting.

32

Conservative engineering throughout
ensures that the machine is manufactura-
ble, maintainable, and reliable. The power
of the machine arises from its novel archi-
tecture rather than from exotic engineer-
ing. It incorporates few types of boards;
one board in particular-the matrix
board-is replicated 128 times in a 64K
machine. The matrix board is a lo-layer
board with 9-mil trace widths.

The chip technology is also current state
of the art and conservative. The CM-l chip
was implemented on a 10,000-gate, two-
micron, complementary-metal-oxide-
semiconductor gate array. The CM-2 chip
is implemented on two-micron CMOS
standard cells and has about 14,000 gate
equivalents.

The massive parallelism of the machine
makes it possible to provide a particularly
powerful and fast set of hardware diagnos-
tics. For example, the entire memory
(which accounts for a large percentage of
the silicon area of the machine) can be
tested in parallel. Diagnostics can isolate
a failure to a particular chip or pair of
chips and one wire connecting them more
than 98 percent of the time. Diagnostics,
in combination with the error-detection
hardware on all data paths, leads to a relia-
ble and maintainable system, with mean
time to repair well under one hour.

CM-2 performance. We can measure
the Connection Machine’s performance in
a number of ways. Since the machine uses
bit-serial arithmetic, the speed of integer
arithmetic and logical operations will vary
with word length; the languages imple-
mented on the machine take advantage of
this and use small fields whenever possible.
For example, 32-bit integer arithmetic and
logical operations run at 2,500 million
instructions per second, while eight-bit
arithmetic runs at 4,000 MIPS.

The speed of the machine also depends
on how many processors take part in a par-
ticular calculation, and on the virtual-
processor ratio. In some cases, higher
virtual-processor ratios lead to higher
instruction rates because the physical
processors are better utilized.

Sustained floating-point performance
has been shown to exceed 20 gigaflops (bil-
lions of floating-point operations per sec-
ond) for polynomial evaluation using
32-bit floating-point-precision operands.
When the function to be computed
involves interprocessor communication
such as a 4K x 4K-element matrix multi-
ply, sustained performance typically
exceeds five gigaflops.

COMPUTER

We can express the performance of the
Connection Machine communications sys-
tems in either of two ways: bandwidth-or
time per operation. Grid communications
performance varies with the choice of grid
dimensionality, grid shape, and virtual-
processor ratio. A two-dimensional-grid
Send operation takes about three microse-
conds per bit. For 32-bit, two-dimensional
grid operations, that translates into 96
microseconds or 20 billion bits per second
of communications bandwidth.

Router communications performance is
somewhat harder to measure because it
depends on the complexity of the address-
ing pattern in the message mix, and thus
the number of message collisions. For a
typical message mix, 32-bit general Send
operations take about 600 microseconds.
This translates into about three billion bits
per second of communications bandwidth
for typical message mixes (peak bandwidth
exceeds 50 billion bits per second).

The performance of the Connection
Machine I/O system depends on the num-
ber of channels in use. Each of up to eight
I/O channels has a bandwidth of 40 mil-
lion bytes per second, for a total band-
width of 320 million bytes per second. This
peak bandwidth has been observed on an
installed DataVault disk system. The typi-
cal sustained bandwidth on the DataVault
is 210 million bytes per second, which
makes it possible to copy the entire con-
tents of the Connection Machine memory
(512 megabytes) to disk in about 2.4
seconds.

The preceding discussions show that the
Connection Machine achieves significant
gains in performance over conventional
computers through the use of a data-
parallel model in a fine-grained, massively
parallel architecture without using any
exotic technology. But, how broadly
applicable is this data-parallel model? In
the remainder of this article, we will illus-
trate the breadth of applications by
describing a range of applications already
developed on the Connection Machine.

Applications of the
Connection Machine

Performance measures of massively
parallel architectures tell only part of the
story. One of the significant revelations
that occurred with the introduction of the
Connection Machine concerned the sur-
prising number of different application
areas suitable for this technology.

.

The general-purpose
nature of the

Connection Machine
permits it to be

applied equally well to
numeric and

symbolic processing.

Although data-parallel programming
requires a different approach towards
computation, programm%rs quickly
adapted. In fact, they often found that
many systems are naturally expressed in a
data-parallel programming model. Fears
that parallel programming would require
a massive reeducation effort proved
unfounded.

The partial list of applications given in
Table 1 illustrates the range of applications
developed for the Connection Machine. In
general, most applications required less
than a person-year of effort and were pro-
totyped in a matter of months. The list
includes examples from engineering,
materials science, geophysics, artificial
intelligence, document retrieval, and com-
puter graphics. Far from being an archi-
tecture designed for special domains, the
general-purpose nature of the Connection
Machine permits it to be applied equally
well to numeric and symbolic processing.

We include here discussions of three
applications from the fields of VLSI
design, materials science, and computer
vision. These examples illustrate the use of
parallelism in a range of areas and the role
interprocessor communication plays in
supporting the data-structure require-
ments of each application. Grid-based
communication finds primary application
in regularly structured problems such as
particle simulations, while general routing
supports the differing topologies of circuit
simulation and computer vision.

Consult Waltz’ for detailed descrip-
tions of several other applications.

Molecular dynamics. Since the 196Os,
materials science has been a key technol-
ogy in designing jet-engine turbine blades
and other high-technology products. To

understand materials more fully, designers
often perform simulation studies. Unfor-
tunately, macro-level experiments,
whether direct or computer-simulated,
have not successfully explained important
behaviors such as metal fatigue. That
requires simulation at the molecular level.
Here a major problem arises. Studies of
perfect crystals generally offer little help
in understanding real-world materials, as
evidenced by the fact that the strengths
predicted by such studies often exceed
those measured in actual metals by twenty
to fifty times. Defects in the crystalline
structure alter its properties and dramati-
cally increase the computational complex-
ity of simulation studies. Often the
interactions of ten thousand to one million
atoms need to be simulated to accurately
represent the real-world behavior of
materials.

Molecular-dynamics simulation is
extremely computation-intensive, and the
necessity of computing high-order interac-
tions on systems of millions of particles
poses major problems for conventional
machines. Data-parallel architectures per-
mit the investigator to see in minutes what
would take hours on traditional hardware.
The Connection Machine virtual-
processor mechanism allows the investiga-
tor to simulate systems many times larger
than would a physical-processor system
alone.

A commonly used model for molecular
dynamics uses the Lennard-Jones 6/12
potential to describe the interactions
between uncharged, nonbonded atoms.
Two approaches permit the study of this
behavior on the Connection Machine. In
both cases, processors are assigned to indi-
vid

7
particles. Each processor contains

the x,y,z) position of the particle, the
velocity, and the force on the particle from
a previous time step of the simulation. All
calculations are performed using 32-bit
floating-point precision.

In the first approach, we consider inter-
actions between all particles. Particles are
arbitrarily assigned to processors. The
NEWS grid circulates the information
about each particle throughout the CM
such that each processor can compute the
force its particle receives from every other
particle in the system. All processors use
the result of these forces to update their
own (x,u,z) position in parallel. Depend-
ing upon the purpose of the simulation, we
might observe several hundred time steps.
For large systems, each processor com-
putes tens of thousands of force calcula-
tions during a single time step.

August 1988 33

Circuit Placement

Figure 5. VLSI cell placement. Given an
initial placement of cells, individual
cells swap positions to reduce the total
wire length.

This approach makes no assumption
about which particles lie near others and
hence dominate the overall force calcula-
tion. Dramatic improvements in execution
time are possible if we know the location
of nearby particles in advance. If we
assume that the particles of the simulation
have a regular structure and do not drift
far from their initial relative positions (as
in modeling solid-phase materials at low
temperatures), we can take an alternative
approach.

In the second approach, particles are
assigned to processors according to their
spatial configuration. In a manner akin to
convolution, nearest-neighbor communi-
cation is used to calculate the forces from
a surrounding K x K neighborhood of
particles. Particles are free to drift, but we
assume they stay roughly ordered relative
to each other. Since the force calculation
is dominated by these near neighbors, we
can impose a cutoff in the force calcula-
tion. We simply ignore interactions of dis-
tant particles.

Even in large-scale simulations, the
number of near neighbors remains rela-
tively small. Thus, we need to compute
only a fraction of the total number of force
calculations. As expected, this results in a
significant reduction in the time required
for simulation. Systems as large as a mil-
lion molecules when tested showed sus-
tained execution rates in excess of 2.6
gigaflops.

Researchers have applied this data-
parallel approach to studying defect
motion in two-dimensional crystals of
16,384 atoms. They introduce stress by
gradually shifting the top and bottom rows
of atoms in opposite directions. They then
observe the resulting movement, or perco-
lation, of the defects. This work has con-
tributed greatly to the study of
stress-failure modes in various materials.

VLSI design and circuit simulation.
Computer-aided design tools are routinely
used in VLSI design, but as the size of cir-
cuits increases, two aspects of the design
process become increasingly important
and computationally expensive: cell place-
ment and circuit simulation.

Cellplacement. Semicustom VLSI cir-
cuits with more than 10,000 cells or parts
have become quite common. Placing this
number of parts on a chip while simultane-
ously minimizing the area taken up by
interconnecting wire has proved a difficult
and time-consuming problem. Minimiza-
tion of area occupied is important because
in general the smaller the area, the higher
the expected yield. Designers have applied
various automated methods to this prob-
lem. One method, employing simulated
annealing,9 produces good optimization
results on a broad spectrum of placement
problems. Unfortunately, for circuits hav-
ing 15,000 parts, simulated annealing may
require 100 to 360 hours on a conventional
computer. On a 64K-processor Connec-
tion Machine, the time required reduces to
less than two hours.

Simulated annealing is an optimization
procedure related to an analogous process
in materials science wherein the strength of
a metal is improved by first raising it to a
high temperature and then allowing it to
cool slowly. When the metal is hot, the
energy associated with its molecules causes
them to roam widely. As the metal cools,
molecules lose their energy and become
more restricted in their movements, set-
tling into a compact, stable configuration.
This general optimization procedure,
already applied to a variety of problems,
supports parallel implementation.

Designers apply simulated annealing to
VLSl placement in the following way.
Given an initial arbitrary placement of
cells for a VLSI circuit, the designer first
computes the size of the silicon chip
required. Improvement in the layout
results from swapping cells to reduce the
total wire length (see Figure 5). If the only

exchanges permitted are those that reduce
total wire length, the placement pattern
would seek a local minimum-not neces-
sarily optimal.

Simulated annealing, however, accepts
a certain percentage of “bad” moves in
order to expose potentially better solu-
tions, avoiding the classic trap of local
minimums. The percentage of such “bad”
moves the system will accept is governed
by a parameter usually expressed as a tem-
perature. Starting with a high tempera-
ture, a large number of cells are permitted
to change position over great distances.
Gradually, the temperature parameter is
lowered, restricting the movement of cells
and the number of exchanges. Ultimately,
the system converges to a near-optimal
solution as only nearby “good” exchanges
are permitted.

Implementation of simulated annealing
in parallel on the Connection Machine is
straightforward. Individual cells, potential
locations for cells, and nodes where wires
between cells connect are represented in
individual processors. The need to
exchange information between cells at
arbitrary locations illustrates the utility of
the general router-based communications
mechanism of the Connection Machine.

Simulated annealing takes place as fol-
lows. According to the given temperature
parameter, a certain percentage of cells
initiate a swap, calculate the expected
change in wire length, and accept or reject
the move. Potential exchanges are chosen
by randomly generating the addresses of
other cells. (Exchanges in general are not
independent when performed in parallel,
so restrictions on cell movements are
enforced to ensure the consistency of the
oell rearrangement.) This process repeats
as the temperature parameter slowly
lowers, restricting cell movement until the
solution is acceptable to the designer.

Circuit simulation. A second area of
importance to the electronics industry is
VLSI circuit simulation. Unfortunately,
our ability to simulate large circuits has not
kept pace with the increasing number of
components. Again, this results from the
computation-intensive nature of simula-
tion. Consequently, often only circuits
with several hundred transistors are simu-
lated at a time. Just as computer-aided
design tools have become essential for suc-
cessful implementation of VLSI, designers
need simulation at the level of analog
waveforms to verify circuit design.

Real circuits operate according to the
characteristics of each component and

34 COMPUTER

Figure 6. Simulation output of VLSI circuit. Waveforms from multiple probe points are displayed for a given input.

through enforcement of Kirchoff’s law,
which states that at each node the current
entering the node is exactly balanced by the
current leaving the node. In computer
simulation, this leads to the application of
an iterative relaxation method at each time
step, which brings the circuit into
equilibrium.

A Gauss-Jacobi relaxation algorithm
for solving a system of nonlinear differen-
tial equations has been employed to simu-
late VLSI circuits.” As implemented on a
Connection Machine, individual compo-
nents (such as transistors, resistors, or
capacitors) and nodes are each assigned to
individual processors. Pointers express the
connectivity of the circuit. During simula-
tion, the pattern of communication
directly reflects the topology of the circuit.

August 1988

A simulation time step starts with all
nodes sending their voltages to the termi-
nals of the components to which they con-
nect. In the initial time step, we know only
the potentials at the power supply and
ground nodes (others are assumed zero).
Each element computes its response and
sends this information back to connecting
nodes. Each node processor checks to see
if all currents balance. If so. the time step
is complete; otherwise, each node,proces-
sor updates its expected potential accord-
ing to the relaxation rule, and the cycle
repeats. In practice, each time step typi-
cally requires three to four iterations and
accounts for one-tenth of a nanosecond
simulated time. Figure 6 shows a typical
simulation.

Because all operations take place in par-

allel, simulations of circuits with more
than 10,000 devices can run in a few
minutes on a 64K-processor Connection
Machine. Simulations of circuits having
more than 100,000 transistors have run in
less than three hours.

Computer vision. Problems in com-
puter vision pose a major challenge for
today’s systems not only because the prob-
lem is large (256K pixels in a typical video
image), but also because we need a variety
of data structures to meet the differing
representational requirements of vision.
We can easily see how to apply massively-
parallel systems to pixel-level image pro-
cessing, but it is often less clear how par-
allelism applies to higher-level concerns, as
in the recognition of objects in a scene.

35

Figure 7. Using a stereo pair of left and right terrain images, the system corrects for
any geometric distortions, detects edge points, computes elevations, and generates
a contour map for the given terrain.

1 Model: A

S)

4

Figure 8. Parallel object-recognition steps.

36

Therefore, we show here two examples in
computer vision: production of a depth
map from stereo images, and two-
dimensional-object recognition.

Depth map from binocular stereo.
Binocular stereo is a method for determin-
ing three-dimensional distances based on
comparisons between two different views
of the same scene. It is used by biological
and machine vision systems alike. Drum-
heller and Poggio” have implemented a
program that solves this problem in near-
real time and illustrates aspects of per-
forming image analysis on the Connection
Machine.

Given a stereo image pair, the program
produces a depth map expressed in the
form of a topographic display. First, two
images (left and right) are digitized and
loaded into the Connection Machine, with
pixel pairs from right and left images
assigned to individual processors. Next, a
difference-of-Gaussians filter is applied to
each image to detect edge points, which
form the primitive tokens to be matched
in the two images. All pixels perform this
difference-of-Gaussians convolution in
parallel.

To determine the disparity of features
between left and right images, the Connec-
tion Machine system performs a local
cross-correlation between the two images.
It slides the right image over the left using
NEWS communications. At a given rela-
tive shift, the two edge-point patterns are
ANDed in parallel, producing a new image
that has the Boolean value t only at points
where the left and right images both con-
tain an edge.

Then each processor counts the number
dFt’s in a small neighborhood, effectively
computing the degree of local correlation
at each point. This occurs at several rela-
tive shifts, with each processor keeping a
record of the correlation score for each
shift.

Finally, each processor selects the shift
(disparity) at which the maximum corre-
lation took place.

Since the above process determines dis-
parity (and distance) only at edge pixels,
we must “fill in” the non-edge pixels by
interpolation using a two-dimensional
heat-diffusion model. The resulting depth
map is displayed either as a gray-scale
image with density as a function of height
from the surface, or in standard topology
map format. The entire process, from
loading in a pair of 256 x 256-pixel stereo
images to production of a contour map,
completes in less than two seconds on a

COMPUTER

(a) 3)

00

Figure 9. Object recognition example showing original image (a), feature extraction (b), hypothesis generation (c), and recogni-
tion and labeling of objects (d). ri

64K-processor Connection Machine (see
Figure 7).

Object recognition. Recognition of
objects in natural scenes remains an
unsolved problem in computer science
despite attracting research interest for
many years. It is important in many appli-
cations, including robotics, automated
inspection, and aerial photo-
interpretation.

In contrast to many of the systems
designed to date, the object-recognition
system described in this sectioh was
designed to work with object databases
containing hundreds of models and to
search each scene in parallel for instances
of each model object.” While this system
is limited to recognition of two-

dimensional objects having rigid shapes,
it is being extended to the three-
dimensional object domain.

The general framework for the
approach taken here is massive parallel
hypothesis generation and test. Whereas
object-recognition algorithms tradition-
ally use some form of constraint-based tree
search, here searching is effectively
replaced by hypothesis generation and
parameter space clustering. In this scheme,
image features in the scene serve as events,
while features of each model serve as
expectations waiting to be satisfied.
Hypotheses arise whenever an event satis-
fies an expectation.

On the Connection Machine, objects
known to the system are represented sim-
ply as a collection of features-generally

straight line-segments and their intersec-
tions at corners. Each feature is assigned
to its own processor. A single object is
therefore distributed over a number of
processors, enabling each feature to
actively participate in the solution.

Features useful for hypothesis genera-
tion are those that constrain the position
and orientation of a matching model
object. A single point, line, or patch of
color is by itself not sufficient. In a two-
dimensional world, however, the intersec-
tion of two lines that matches an expected
model corner can be used to generate a
hypothesis that an instance of the model
object exists-albeit translated and rotated
such that the corresponding features come
into alignment.

Figure 8 illustrates this parallel hypoth-

August 1988 37

esis generation and verification method.
An unknown scene is first digitized and
loaded into the Connection Machine mem-
ory as an array of pixels, one per proces-
sor. Edge points are marked and straight
line segments are fitted to edge points
using a least-squares estimate. Intersecting
lines are grouped into corner features and
matched in parallel with corresponding
corner features in the model database.

Whenever a match between an image
and model feature occurs, a hypothetical
instance of the corresponding model
object is created and projected into the
image plane. A hypothesis-clustering
scheme, related to the Hough transform,
is next applied to order hypotheses accord-
ing to the support offered by mutuahy sup-
porting hypotheses. Although this still
leaves many possible interpretations for
each image feature, the Connection
Machine can quickly accept or reject thou-
sands of hypotheses in parallel using a
template-like verification step.

Verification results from having each
instance check the image for evidence sup-
porting each of its features in parallel.
Hypotheses having strong support for
their expected features are accepted over
those with little support. Expected features
of an object that are occluded or obscured
in the scene do not rule out the hypothe-
sis, they only weaken the confidence the
system has in the object’s existence. Com-
petitive matching between instances for
each image feature finally resolves any
conflicts that arise in the overall scene
interpretation. Results appear in Figure 9.

The time required from initial image
acquisition to display of recognized
objects is approximately six seconds on a
64K-processor Connection Machine.
Experiments have shown this time to be
constant over a range of object database
sizes from 10 to 100. We expect optimiza-
tion of this task to reduce the time to less
than one second.

T he Connection Machine
represents an exciting approach to
dealing with the large and com-

plex problems that a growing number of
people wish to solve with computer sys-
tems. The size of problems has grown at a
rate faster than improvements in technol-
ogy, forcing us to find innovative ways of
using current technology to achieve quan-
tum leaps in performance.

We have described the architecture and
evolution of the Connection Machine,
which directly implements a data-parallel

model in hardware and software. From the
applications described here and elsewhere,
it seems clear to us that data-level parallel-
ism has broad applicability. We expect
that its applicability will continue to grow
as people continue to require solutions to
larger and more complex problems. 0

References

1. W.D. Hillis and G.L. Steele, “Data-Parallel
Algorithms,” Comm. ACM, Vol. 29, No.
12, 1986, pp. 1,170~l$83.

2. P.M. Flanders et al., “Efficient High Speed
Computing with the Distributed Array
Processor,” Hiah-Sveed Conmuter and
Algorit& Org&i&tion, Ku&, Lawrie,
and Sameh, eds., Academic Press, New
York, 1977.

3. K.E. Batcher, “Design of a Massively Par-
allel Processor,” IEEE Trans. Computers,
Vol. C-29, No. 9, 1980.

4. D.E. Shaw, The Non- Von Supercomputer,
tech. report, Dept. of Computer Science,
ColumbiaUniv., New York, August 1982.

5. L.S. Haynes et al., “A Survey of Highly
Parallel Computing,” Computer, Vol. 15,
No. 1, 1982, pp. 9-24.

6. W.D. Hillis, The Connection Machine,
MIT Press, Cambridge, Mass., 1985.

7. G.E. Blelloch, “Scans as Primitive Paral-

Lewis W. Tucker is a senior scientist at Think-
ing Machines Corp., where he is engaged in the

ing, parallel algorithms, computer architecture,
and machine learning.

Tucker earned his BA from Cornell Univer-
sity in 1972 and a PhD in computer science from
the Polytechnic Institute of New York in 1984.

Acknowledgments

Numerous people have contributed to the
development of the architecture and applica-
tions of the Connection Machine. We wish to
offer special thanks to Danny Hillis, Brewster
Kahle, Guy Steele, Dick Clayton, Dave Waltz,
Rolf-Dieter Fiebrich, Bernie Murray, and Mike
Drumheller for their help in preparing this
article.

This work was partially sponsored by the
Defense Advanced Research Projects Agency
under contract no. NOOO39-84-C-0638.

lel Operations,” Proc. Int’lConJ Parallel
Processing, Aug. 1986, pp. 355-362.

8. D.L. Waltz, “Applications of the Connec-
tion Machine,” Computer, Vol. 20, No. 1,
1987, pp. 85-97.

9. C.D. Kirkpatrick, C.D. Gelatt, and M.P.
Vecchi, “Optimization by Simulated
Annealing,” Science, Vol. 220, May 1983,
pp. 671-680.

10. R.A. Newton, and A.L. Sangiovanni-
Vincentelli, “Relaxation-Based Electrical
Simulation,” IEEE Trans. Computer-
Aided Design, Vol. CA-D-3, No. 4, 1984.

11. M. Drumheller and T. Poggio, “On Parallel
Stereo,” Proc. 1986 IEEE Int’l Conf. on
Robotics and Automation, April 1986, pp.
1,439-1,488.

12. L.W. Tucker, C.R. Feynman, and D.M.
Fritzsche, “Object Recognition Using the
Connection Machine,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition,
June 1988, pp. 871-877.

George G. Robertson is a principal engineer at
Xerox PARC, working on user interface
research and artificial intelligence. Previously,
at Thinking Machines, he worked on massively
parallel systems and artificial intelligence. His
publications are primarily in the areas of user
interfaces, programming language design, oper-
ating systems design, distributed systems, and
machine learning.

Robertson received an MS in computer
science from Carnegie Mellon University and a
BA in mathematics from Vanderbilt University.

Readers may write to Tucker at Thinking Machines Corp., 245 First St., Cambridge, MA02142.

38 COMPUTER

