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Abstract

In the real world designers often use French curves or sweeps to
create or edit curves to bring out a personal style or reflect a cor-
porate standard in all their designs. A French curve is a general
term for a pre-defined curve template used to create high quality
2D drawings or sculpt 3D models. Research in interactive curve
and surface design is continually moving toward direct manipula-
tion of the objects being defined. This paper describes a system in
which digital French curves, represented by planar cubic NURBS
curves, interactively create and sculpt curves and surfaces that com-
prise the design of an object. The approach is especially relevant
in the early stages of conceptual design to beautify and simplify
curves obtained from quick gestural sketches. Algorithmically, the
contributions of this paper are twofold. We describe an efficient
technique for approximating a planar parametric curve by a small
set of elliptic arcs. Proximity computation to the approximating
ellipses is simple and efficient, greatly improving the interactiv-
ity of the sculpting paradigm. We also describe a simple approach
to smoothly replace sections of design curves with sections of the
French curve. The results are illustrated within a design system
using a puck that provides simultaneous position and orientation
information to control the digital sweep, allowing the user the same
physical feel and efficiency of motion of a real sweep.

1 Introduction

Finding effective techniques for interactive curve and surface de-
sign continues to be a challenging and fertile area of research
[13, 6, 7, 9, 10, 11, 20, 22, 23]. While a number of industrial de-
sign systems are in widespread use today, traditional design ap-
proaches of sculpting and sketching continue to be used. Many
industrial designers prefer to build prototypes in a real workshop
as part of the initial conceptual design process, because it is impor-
tant to quickly resolve shape and form in 3D. A real world model
shop allows the designer to quickly understand form, shape and
size. Blue foam, card or clay models are thus popular just to un-
derstand the 3D form and the problems designing with real world
constraints. As a result a number of interactive digital approaches
that capture the essence of these traditional techniques have been
investigated [2,5, 12, 16, 19, 22,23,24].
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Designers often use French curves or sweeps to create or edit
curves. French curves are typically constructed from l/8”  clear
perspex, in a shape, pleasing to the designer [15] (See Figure 1).
A similar tool called a steel is widely used by modelers in the auto-
motive industry to sculpt sections on clay models. A set of French
curves or steels thus defines character for an entire era of designs.

Existing industrial design systems use a number of techniques to
create and edit digital curves. These range from the basic manipu-
lation of control vertices, to more sophisticated direct manipulation
methods using tangency or curvature constraints, snapping, sculpt-
ing and sketching. Illustrator’s pencil/pen tools [1], provide an ex-
cellent example of current curve editing paradigms. French curves
differ signficantly from these techniques in three ways. Firstly,
the edited curves precisely fit predefined templates, allowing de-
sign curves to accurately reflect a personal or corporate style. Sec-
ondly, French curves are carefully crafted to have a minimal curve
complexity and desirable curvature properties, which it imparts to
edited design curves. Finally, digital French curves emulate a tradi-
tional design paradigm, allowing many designers to utilise already
acquired skills towards digital curve design.

1 .l Problem description

Our model for digital French curves is catered to the initial stages of
conceptual object design (See Figure 2). A typical workflow would
involve using a French curve to clean up and simplify sections of
sketched curves by a creating a replacement curve or sculpting the
sketched design curves (See Figure 3,4). We thus make the follow-
ing assumptions of our design model.

l The digital French curve is planar. When editing design
curves that have depth information outside of the plane of the
French curve, it is treated like an extruded object (See Fig-
ure 5).

l The design curves to be edited are either planar or almost
planar. Curves like the sinusoidal wave in Figure 5 will be
discussed in the conclusion, but for the most part the design
curves will be assumed to be planar.

l We use cubic NURBS curves to model our French curves due
to their generality and minimality of representation. Since
French curves are also used to enhance the quality of the ob-
ject design curves, design curves of a different representation
are converted to cubic NURBS curves [10, 14] before being
edited.
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There are two aspects to design with French curves.

l Creation: A segment of the French curve is specified that gets
converted into a design curve (See Figure 3).

l Editing: Here a French curve interacts with an already exist-
ing design curve to alter or extend it (See Figure 4a,b). Editing
is a two step process:
Correspondence: Determining which part of the design
curve is being edited by which part of the French curve.
Replacement: Replacing a section of the design curve with a
section of the French curve.

1.2 Overview

The remainder of this paper is organized as follows. Section 2 pro-
poses approaches to the correspondence problem, based on prox-
imity calculations between points on the design and French curves.
We continue our discussion of the correspondence problem in Sec-
tion 3 with an efficient solution to curve proximity calculation,
achieved by approximating the curve by set of elliptic arcs. Sec-
tion 4 describes the algorithm for generating a smooth curve by
replacing a section of a design curve with a section from a digital
French curve. Section 5 provides implementation details and Sec-
tion 6 concludes with a discussion of the results obtained.

2 Curve correspondence

This is the first step during interaction with a digital French curve,
where a section of the French curve that creates or edits a section of
a design curve must be specified. We discuss two approaches to cal-
culating this correspondence: brushstrokes and interactive sculpt-
ing.

2.1 Direct specification using brushstrokes

Brushstrokes are the basic technique for the creation of design
curves using digital French curves [13]. The user sketches/brushes
over a section of the French curve (See Figure 4c,d), that forms a
new design curve (See Figure 3a). When editing an existing design
curve, brushing along a French curve precisely specifies the sec-
tion of the French curve to be used as a replacement for part of the
design curve.

Creating a new design curve from brushing over a French curve
is simply a matter of generating a sub-curve [10] from the formula-
tion of the digital French curve. Editing design curves using French
curves is based on the premise that the section of the design curve
being edited has the same general shape and position in space as the
section of the French curve it will be replaced with. We therefore
assign a user controlled thickness so that the brushstroke covers an
area around the specified section of the French curve. The part of
the design curve that lies within this area is inferred as the section
to be replaced.

2.2 Specification based on interactive sculpting

Reiterating the premise that the section of the design curve being
edited and the section of the French curve used for the editing are
spatially proximal, one may attempt to infer both sections implic-
itly from the spatial relationship of the design and French curves.
What results is an interactive approach where sections of the French
curve continually sculpt the design curve by replacing sections of
the design curve that are proximal to it. This approach has greater
interactivity than using brushstrokes for editing since both manipu-
lation and editing is accomplished in a single operation.

2.3 Calculating proximity between curves

A simple approach to establishing correspondence between proxi-
mal sections of the design curve and French curve would be to find
the Euclidean closest point to one curve from a sampling of points
along another. We sample points along the design curve. A se-
quence of sample points for which the Euclidean closest distance
to the French curve is within a given tolerance (the thickness of
a brushstroke), define a section of the design curve. The closest
points on the French curve correspondingly provide a section of the
French curve with which to sculpt the design curve. Closest point
to curve calculations lie at the heart of virtually any correspondence
algorithm such as the one outlined above.

The precise calculation of the closest point to a curve is a compu-
tationally expensive operation. Techniques based on the deCastel-
jau construction of parametric splines [8,21] provide a closest point
by recursively subdividing the convex hull of the curve in the local
proximity of the estimated closest point. The algebraic distance to
an implicitly defined curve or surface is usually easier to compute
than Euclidean distance and may be used as a good proximity met-
ric instead of the shortest Euclidean distance [17]. We only require
approximate proximity calculation since fine tuning the correspon-
dence and the transition from the unedited design section to the
French curve section is ultimately under user control. We thus pro-
pose a mechanism where the French curve is first approximated by
a small number of elliptic arcs and straight lines. We then use alge-
braic distance to the arcs instead of Euclidean distance to efficiently
determine the proximity of points to the French curve.

Given a point in the plane and an elliptic arc, we transform the
point to the local reference frame of a circle, which when non-
uniformly scaled results in the given ellipse. If the point lies within
the angular range of the arc, the algebraic distance provides the
proximity metric, else the square of the Euclidean distance to the
closer of the two arc end-points is used. For a point in the plane we
thus iterate through the sequence of elliptic arcs until the point lies
within the proximity requirements of some arc.

The next section describes the approximation of planar curves
using elliptic arcs. Note that there are a number of alternate ap-
proaches to calculating proximity of a point to a curve [8, 21, 4].
The elliptic arc approximation, however, is particularly well suited
to our application, since physical French curves have been tradi-
tionally crafted from conic sections.

3 Curve fitting using elliptic arcs

The algorithm first breaks the curve into a number of potential curve
segments based on inflection points and points of extreme curva-
ture. At this point each segment could be finely sampled and Pratt’s
least squares approach [17, 18] used to fit an ellipse through the
points. Alternatively, since we have a continuous curve, we can
use the ability to evaluate points and their derivatives at arbitrary
parameter value to good advantage. We thus calculate elliptic arcs
analytically using the position, tangent and curvature of each curve
segment at the break points. Finally we try and combine the arcs



representing adjacent segments to reduce the number of elliptic arcs 
used. 

3.1 Generation of break points 

This step is based on the simple observation that the curvature of 
an ellipse is a well behaved function that attains extreme values at 
the intersection with its principal axes. The candidate break points 
on the curve are thus points of local extrema of curvature along 
the curve (See Figure 6). In our implementation we simply sam- 
ple parametric curves using an adaptive step, to approximate an arc 
length parametrization. A low-pass filter is applied to the curva- 
ture along the curve, so that local extrema caused due to curvature 
changes at frequencies higher than the filter cutoff do not generate 
break points. Lower cutoffs thus result in fewer break points or 
curve segments and subsequently a fewer number of elliptic arcs, 
at the cost of accurately representing the high frquency curvature 
changes in the curve. 

We also use break points to demarkate intervals of near constant 
curvature along the curve which can be simply represented by circu- 
lar arcs, or straight line segments in the case of near zero curvature. 

Finally we add break points when the normal to the curve rotates 
through more than a right angle without the generation of a break 
point. This is to deal with curves like spirals (See Figure 11) where 
curvature changes monotonically. 

Figure 6: Break points on a curve 

3.2 Fitting a curve segment with an elliptic arc 

A solution to this problem using existing fitting methods would be 
to sample the the curve segment to generate a cloud of points on 
the curve to which an elliptic arc may be fit using a least squares 
approach. 

What we propose below is an efficient analytic approach. The 
algorithm is based on the premise that the input curve segment is it- 
self a monotonic polynomial function, typically of low degree, such 
as a cubic and therefore will be well approximated by the ellipse in 
the interior of the segment if the curve and its approximating ellipse 
match up well at the break points in terms of position, tangent and 
curvature. 

Let point Pc, PI be two adjacent break points. Let the normals 
to the curve at these points be iVa, IV1 and the respective radii of 
curvature TO, rr (See Figure 6). Since the points are local extrema 
on the curve we attempt to make the points lie on the principal axes 
of the elliptic arc. We will construct an ellipse passing through point 
Pa whose principal axis A lies along NO. The parametric equation 
of such an elhpse in a reference frame defined by NO with the origin 
at Pa is 

(a.b) 

(-bcost,-aeint) 

Figure 7: Definition of an ellipse 

The radius of curvature at a point on the ellipse is given by 

f-d = 
ia2 sin2 t + b2 cos2 t)3/2 

ab (2) 

We would like to match the curvature of the ellipse and the curve 
at PO. 

r-0 M rello = b2/a. 

Additionally the normal vector to the ellipse at a point is 

(3) 

Nell = (-bcost,-asint). (4) 

Let (i,j) = Pp’ and (1zi, nj) = N:oca’ be PrandNr trans- 
formed into the reference frame of the ellipse (See Figure 8). 

Figure 8: Fitting an elliptic arc to a curve segment 

Once again we would like the normal vector for the ellipse and 
the curve at PI to be the same. Using Eq. (1) and Eq. (4) this is 
equivalent to 

(i-a)b M nia. 
ja njb 

Eq. (3) and Eq. (5) may be rewitten in the form 

1 
I(ml + m2a). g = a2 (6) 

where ml M 0, ms x l/r0 for Eq. (3) and ml RG 2, ma M 
2 for Eq. (5). 

Substituting Eq. (6) into the implicit form of Eq. (1) at point 
(i, j) we get 

x-a=acost.y=bsint. (1) 
i2 + ml j2 

a = 2i - m2 j2 ' 
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Based on the continuity properties of the curve and the criteria 
for generating break points we can assume that i > 0, otherwise 
we have a segment of zero curvature best represented by a straight 
line. Also observe that ni 2 0, jnj < 0 

A valid solution must have a 2 i. Therefore, according to 
Eq. (7) the curvature of the ellipse at PO, r,ll,, 5 $. Also from 
the equation, for a to be positive 2ir,ll,, - j2 > 0, or r,r10 > $. 

Suppose ml = 2, m2 = z. Substituting this into Eq. (7) 

we get a = i(ini+jn f) 2in. +& . The curvature of the ellipse at PO would 

be, Tell0 = g =’ $ (1 + %). 
We pick a value for the radius of curvature that tries to match 

both the normal vector to the curve at PI and the radius of curvature 
of the curve at PO. 

The radius of curvature at PO for the ellipse is thus r,l10 = (TO + 
c (1 + %))/2. We constrain r,l10 to lie between ($, $1 and use 

.2 
Eq.(7)toseta= &++,b=a. 

We can now calcuia& the parameter t for Pi on the ellipse as 
t = sin-‘(j/b) from Eq. (1) and hence normal iVelll, and radius 
of curvature r,rrl to the ellipse at Pi using Eq. (4) and Eq. (2) 
respectively. 

We use (r-0 - rerr,)2 + (r-1 - ~~11~)~ as a measure of fitness for 
the curve segment; the smaller the fitness value, the better the fit. 

Since the resulting ellipse depends on the order of the adjacent 
break points, we use the above algorithm to generate two elliptic 
arcs, one for each ordering of the two break points. The arcs that lie 
within an acceptable fitness threshold are kept. Each approximating 
ellipse is defined by a center C = PO + aNo, an orientation NO and 
the two principal axes a and B. 

In the circumstance that neither arc is considered fit enough, we 
subdivide the curve segment in the middle and repeat the process 
on the two smaller curve segments. Observe that in the limiting 
case small curve segments will eventually be approximated by line 
segments. 

3.3 Combining elliptic arcs 

Once we have generated a sequence of elliptic arcs we repeatedly 
iterate over the sequence in an attempt to coalesce adjacent arcs 
into a larger composite arc. If any two adjacent approximating el- 
lipses match up within a given tolerance in terms of the values of 
their center, orientation and principal axes we generate a composite 
approximating ellipse, defined by the average of these values. The 
fitness of this ellipse is the sum of the fiteness of the component el- 
lipses. We also combine and reduce the number of curve segments. 
A comprehensive solution to the elliptic arc combination problem 
would maintain a heap of possible combinations prioritized by fit- 
ness at every iteration step. Our implementation, however, is a se- 
quential, greedy approach, that works well in practice. 

When approximating ellipses can be combined no more we it- 
erate through the existing sequence of curve segments and simply 
pick the fittest approximating elliptic arc, circular arc or line seg- 
ment to represent that part of the input curve. 

3.4 Results 

The results of our approach can be seen on the test cases below. 
Figure 9a shows a French curve represented by a cubic NURBS 

curve with 17 control vertices, with a plot of curvature variation 
along the curve. Figure 9b shows the set of 14 approximating ellip- 
tic arcs of better fitness. Figure 9c shows the set of 14 approximat- 
ing elliptic arcs of lower fitness and Figure 9d shows the result of 
combining the 14 elliptic segments into 7 composite segments. A 
whole ellipse is used to depict the arcs that get combined. 

Figure 10a shows a noisy free sketched curve. Figure lob shows 
the filtered curve with its calculated break points. Figure 1Oc shows 
the set of 16 approximating elliptic arcs of better fitness. Figure 1Od 
shows the result of combining the elliptic segments into 10 compos- 
ite segments. 

Figure 11: Approximating a spiral with elliptic arcs 

Figure 11 shows a spiral being fitted by elliptic segments. The 
increasing curvature in this case prevents any of the arc segments 
from being combined. 

(a) Higher error tolerance (b) Lower error tolerance. 

Figure 12: Varying tolerance on the fitness of elliptic arcs 

As can be seen from the three examples above the fit of arcs 
obtained from the initially computed break points itself provides an 
effective approximation to the curve. If we lower the threshold of 
acceptable fitness in the case of Figure 9b we see that an additional 
break point is generated in the concave part of the curve on the left 
to obtain a better set of approximating arcs (See Figure 12a,b). 

4 Curve editing using a French curve 
section 

Once a correspondence has been established between sections of 
the design curve and French curve, the section of the design curve 
needs to be altered to track the section of the French curve. The 
initial design curves, which are typically scanned or gesturally 
sketched (See Figure 2) tend to have a large number of control ver- 
tices. To reemphasize, the motivation behind using digital French 
curves, is not only to beautify the design curves to conform to the 
aesthetically pleasing French curve sections but to reduce the com- 
plexity of the design curves in terms of the number of control ver- 
tices used to represent them. 
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(a) Curvature variation (b) Primary fit (c) Secondary fit (d) Combined fit 

Figure 9: Approximating a French curve with elliptic arcs 

(a) Unfiltered curve (b) Posffilter break points (c) Primary lit (d) Combined fit 

Figure 10: Approximating a noisy curve with elliptic arcs 

We thus propose that the sculpting operation be accomplished, 
not by deforming the control points of the existing design curve 
but by appropriately replacing the control points and knot sequence 
pertaining to the section of the design curve with the control points 
and knot sequence from the section of the French curve. We in- 
sert knots at the transition boundaries to control the blend from the 
unedited section of the design curve to the newly inserted section 
of the French curve. 

Let a design curve be represented as a cubic NURBS curve with 
knot sequence < do, .., d(,+z) > with a control vertex sequence 
< vi, . . , & >. The relationship between the number of knots and 
control vertices results from specifying every knot to be a simple 
knot except for triple knots at the end points [IO]. Let the French 
curve similarly be represented by knots < fo, .., f(n+z) > and con- 
trol vertices < ~,f, .., v: >. 

The corresponding sections on the design and French curves are 
indicated using a parameter range on each curve. Given a parameter 
range on a NURBS curve we first extract the section of the knot 
sequence that contains the parameter range. The pertintent control 
vertices for the knot subsequence are easily calculated based on the 
degree of the curve. For cubits, the ith knot influences control 
vertices i - 1, i, i + 1 [lo]. Figure 13a, show a cubic curve with 
control vertices 0..6 and a knot sequence with multiple end knots 
0, 0, 0, 1,2,3,4,4,4. The specified parameter range [2.1,2.8] is 
thus defined by knot subsequence 2,3 and control vertices 2..5. 

We replace the knot subsequence d;, .., dj for a section of the 
design curve with the knot subsequence for a section of the French 
curve fp, . ., fs by reparametrizing every knot fp, where p E [T, s], 
to a knot value d; + (fp-&8)$j)-di). The control vertex subse- 
quence corresponding to the knot subsequence fr, . . , fs is simply 
projected onto the design plane and inserted in place of the control 
vertex subsequence corresponding to the knot subsequence di , . . , dj 
to define the new design curve. 

This is shown in the Figure 13b using the curve in Figure 13a as 
the French curve. Notice that though the resulting curve conforms 
to the French curve in the parameter range specified there is unde- 

sirable behavior as the curve makes a transition from the original 
design curve to the French curve section. Better control results by 
inserting simple knots into the curves at the parameter range ex- 
trema before performing replacement of the design curve section. 
This is shown by the added knots on the French curve and the al- 
most acceptable result in Figure 14a. We find the addition of two 
proximal simple knots at extrema of sections of the design curve 
and French curve to give good results in most practical cases Fig- 
ure 14b. 

(a) Extracting a curve section 

(b) Resulting design curve 

Figure 13: Replacement of design curve section with French curve 
section 

Manipulation of the position of these inserted knots provides the 
user with control over the transition from the unedited design curve 
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(a) One inserted knot (b) Two inserted knots

Figure 14: Replacement after knot insertion

(a) Default (b) Moving three manipulators
inward

Figure 15: Manipulators controlling the transition between design
and French curve

5 Implementation

Curve design using digital French curves has been implemented as
a plug-in in our modeling and animation system Maya.

A typical workflow involves interactively sculpting design
curves by affine transformations of the French curve (See Fig-
ure 16). Once the sculpted section of the design curve has the gen-
eral desired shape, the behavior of the curve in the region of transi-
tion between the unedited design curve and the French curve can be
edited using the point on curve manipulators shown in Figure 15.
The resulting curve in Figure 15a is shown ghosted in Figure 15b to
indicate the change in behavior. Finally the edit operation is com-
mitted and the user can continue to sculpt the edited design curve.

We have prototyped an interaction style for digital French curves
which is based on the two-handed input paradigm proposed by
Kurtenbach [13]. This paradigm emulates the common method
of working with physical French curves on paper where the non-
dominant hand positions and orients the French curve, while the
dominant hand is free to draw along the French curve. Our proto-
type implements this style of interaction by using the Wacom Intuos
digitizer tablet which allows simultaneous use of the puck and pen
(see Figure 16). The puck, which senses its position and orienta-
tion, is used to control the digital French curve while the pen can be
used for brushstrokes along the French curve. In the case of sculpt-
ing with a French curve, where drawing isn’t required, we envision
that the pen could be used to trigger the acceptance of curve edits
and to adjust the point on curve manipulators for the inserted knots
(See Figure 15).

We do not, however, dictate a strict assignment of functionality
of hands. For example, by adding graphical manipulators to the
digital French curves, both control of the French curve and drawing
(or adjusting manipulators while sculpting) could be accomplished
with one input device by serially adjusting each manipulator. In
comparison to the two-handed interaction style, though, serial inter-
action may be less efficient. Also, some positioning and sculpting
tasks may require precise positioning of the French curve and the
user may switch to using the puck in the dominant hand for more
control.

Currently, our interaction paradigm has had limited testing. Our
initial impressions are that, in the sculpting case, simultaneous con-
trol of position and orientation of a French curve allow quick explo-
ration of how a French curve affects a target curve, aiding a designer
in quickly determining the correct position of the French curve for
a desired effect.

We compared the efficiency of our implementation using approx-
imating elliptic arcs for calculating proximity between the design
and French curve against a fixed depth subdivision approach [8].
Interaction rates were about 20 Hz using elliptic arcs and about
14 Hz using subdivided control polygons for results of comparable
quality. The speedup is largely due to the much smaller number of
elliptic arcs than subdivided line segments.

6 Conclusion

The digital French curve paradigm is of great value in the initial
stages of conceptual object design. To begin with they provide
an efficient mechnism for neatening and simplifying sketched or
scanned design curves and endowing them with a minimal repre-
sentation that has good continuity and curvature properties. Equally
important is the stylistic uniformity and character they provide to an
entire era of object designs.

The algorithm described for approximating a parametric curve
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Figure 2: Conceptual Design Workflow

Figure 3: Curve creation using a French curve

Figure 4: Curve editing using a French curve
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