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Derive 

A wide variety of line-drawing algorithms can be derived by applying program transformations to a 
simple, obviously correct algorithm. The transformations increase the speed of the algorithm and 
eliminate the need for floating-point computations. We show how Bresenham's algorithm can be 
derived in this way. The transformations are then used to derive several variants of Bresenham's 
algorithm, designed for use on displays that can generate more than one pixel at a time. The treatment 
shows a complete, extended example of the practical use of program transformations. 

Categories and Subject Descriptors: D.1 [Software]: Programming Techniques; 1.3.3 [Computer 
Graphics]: Picture/Image Generation--display algorithms 
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1. INTRODUCTION 

M a n y  c o m p u t e r  graphics  devices  use l i ne -d rawing  a lgo r i thms  to a p p r o x i m a t e  
s t ra igh t  l ines  by  d isp laying  dots  t h a t  are c ons t r a i ne d  to lie on  a d iscre te  grid. 
I n c r e m e n t a l  p e n  p lo t t e r s  t h a t  move  a p e n  in  smal l  s teps  requ i re  such  a l ine-  
gene ra t ion  a lgor i thm.  P o i n t - p l o t t i n g  C R T  displays  a n d  e lec t ros ta t ic  p lo t t e r s  use  
the  a lgor i thms  to app rox ima te  s t ra igh t  lines. More  recent ly ,  f r ame  buffer,  r a s t e r  
scan  displays  use these  a lgo r i thms  to iden t i fy  the  p ic tu re  e l e m e n t s  (pixels) t h a t  
should  be i l l u m i n a t e d  to d isp lay  a line. 

S impl ic i ty  a n d  speed are the  key design cr i ter ia  for l i ne -d rawing  a lgo r i t hms  
because  the  c o m p u t a t i o n s  are of ten  i m p l e m e n t e d  in  h a r d w a r e  in  order  to achieve  
high l i ne -gene ra t ion  speeds. I t  appea r s  t h a t  the  ear ly  p o p u l a r i t y  of the  b i n a r y  
ra te  mul t ip l i e r  (BRM) was due  en t i r e ly  to s impl ic i ty ,  for i t  gene ra t e s  r a t h e r  poor  
app rox ima t ions  to s t ra igh t  lines. T h e  digi tal  d i f ferent ia l  ana lyze r  (DDA)  gener-  
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260 • Robert F. Sproull 

ates better approximations to the true line, but requires an iterative loop that 
may average almost two cycles to generate each point. An algorithm devised by 
J. E. Bresenham [4] dominates the DDA: it generates the optimal line, in the 
sense described in Section 2; it requires only integer additions and subtractions; 
and it generates one output point for each iteration of the inner loop. 

To achieve very high line-generation speeds, an algorithm must compute the 
location of several points on a line at once. Such multipoint algorithms have 
several applications, chiefly in raster scanned systems that  can write more than 
one pixel at a time into the image. The investigation of multipoint algorithms 
was motivated by the 8 x 8 frame-buffer display [14], which can in one memory 
cycle write a square region with 8 pixels on a side located anywhere on the screen. 

This paper shows how simple program transformations are used to derive all of 
these algorithms, starting from obviously correct algorithms based on simple 
analytic geometry. These transformations assure us that  the more efficient but 
more complex algorithms are correct, because they have been derived by correct 
transformations from a correct algorithm. Transformation techniques of different 
sorts are used in optimizing compilers [1, 2], are recommended to programmers 
for improving their programs [3, 11], and are part of research into automatic 
program improvement [7]. 

2. L INE-DRAWING PRELIMINARIES 

The line-drawing problem is to determine a set of pixel coordinates (x, y), where 
x and y are integers, that closely approximates the line from the point (0, 0) to 
the point (dx, dy}, for integer values of dx and dy. The assumption that  one line 
endpoint is at the origin loses no generality because lines with other origins are 
simply translations of the line with origin (0, 0). Additionally, lines are restricted 
to the first octant: 0 _ dy <_ dx. Again, th i s  assumption loses no generality 
because an arbitrary line can be generated by t~ansposing the canonical line or 
by reflecting it about one of the principal axes. 

The objective of a line-drawing algorithm is to enumerate those pixels that  lie 
close to the true line, the mathematical line from (0, 0) to (dx, dy). Figure 1 
illustrates a typical line, showing with circles the pixels that correspond either to 
spots illuminated by a CRT beam on a raster display or to the swath of a plotter 
pen. Notice that integral values of coordinates locate pixel centers. 

While a line may be displayed using many different pixel configurations, one 
configuration is usually preferred. The preference arises because some configu- 
rations approximate the true line more closely than others, some appear to have 
more uniform pixel density, or brightness, than others, and so on. Many of the 
algorithms presented in this paper generate the optimal line, defined as follows: 

1. The oPtimal line illuminates exactly one pixel in each vertical column. This 
assumption depends on the fact that  the line's extent in x exceeds its extent 
in y. The purpose of this choice is to limit variations in pixel spacing. 

2. Within each column, the pixel illuminated is the one closest to the true line. 

To display the optimal line, the line-drawing algorithm must compute, for each 
integer xi, the coordinate yi of the pixel that  should be illuminated. The coordinate 
yt of the true line is simply yt = (dy/dx)x~. Illuminating a pixel centered at yi 
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y=5 j 

y=O 
x=0 x=8 

Fig. 1. T h e  line from (0, 0) to (8, 5). Small  dots represent  pixel centers. The  solid line represents  
the  t rue  line. Circles show the  pixels t ha t  are i l luminated to display the  opt imal  line. 

Fig. 2. 

f dy 
dx 

I l lustrat ion of the  relat ionship be tween the  vert ical  distance e,, and the  perpendicular  
dis tance ep. 

introduces an error ev = y i  - y t  ffi y i  - ( d y / d x ) x i ,  measured along the y-axis. The 
error ep measured perpendicular to the line can be determined using similar 
triangles (Figure 2): ep ffi ( d x / ( d x  2 + d y 2 ) i ) e v .  Thus, for any given line, ep is simply 
a constant times ev. Consequently, determining yi by minimizing the error e~ will 
identify the pixel tha t  is closest to the line, using either vertical or perpendicular 
distance measures. 

The errors can be minimized if yi  is computed by rounding y t : y i  -~ round(yt),  
or equivalently, yi  = t runc(yt  + 1/2) = [ y t  + 1/2J. (Recall tha t  the floor function, 
Ix J, denotes the greatest integer less than  or equal to x.) With this choice, e~ = 
[ y t  + 1/2J - y t ,  so - 1 / 2  < e~ _ 1/2. 

3. DERIVATION OF THE BRESENHAM ALGORITHM 
The minimum error formulation of the optimal line leads directly to a simple 
algorithm tha t  enumerates all the points on the optimal line, and which can be 
expressed in a PASCAL-like language: 

A1 

var  yt :  e xac t r ea l ;  dx, dy, xi, yi: integer; 
for xi := 0 to dx do begin 

yt :ffi [dy/dx]*xi; 
yi := trunc(yt + [1/2]); 
display(xi,yi) 

end 

Although this procedure is expressed using programming language constructs, it 
requires tha t  precise real arithmetic be used; floating-point approximations are 
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not permitted.  To  emphasize this precise ari thmetic,  variables tha t  use it are 
declared to have type exactreal.  Square brackets  enclose expressions whose 
values do not  change during i terat ion of the loop; these expressions can be 
computed only once, before the loop is entered, and saved in t emporary  variables. 
We shall also maintain tha t  multiplications by a power of two do not  require 
multiplication operations, but  can be achieved by addit ion or ar i thmetic  shifting. 

Strength  reduction. The  next  version of the algori thm is derived from A1 by 
observing tha t  yt can be calculated incremental ly  by adding the quant i ty  (dy /dx)  
on each iteration. Converting multiplications into repeated  additions is one of a 
number  of incremental  techniques used f requent ly  in computer  graphics algo- 
rithms. These  techniques make incremental  changes to the state of an algori thm 
or data  s t ructure  ra ther  than  recomputing a result  f rom scratch. 

A2 

va t  yt: exactreal; dx, dy, xi, yi: integer; 
yt := 0; 
for xi := 0 to dx do begin 

yi :-- trunc(yt +[1/2]); * assert yt = (dy/dx)xi * 
display(xi,yi); 
yl~-- yt + [dy/dx] 

end 

Subst i tut ion o f  variable. A simple t ransformat ion subst i tutes 

ys = yt + 1/2. (1) 

A3 

var  ys: exactreal; dx, dy, xi, yi: integer; 
ys := 1/2; 
for xi := 0 to dx do begin 

yi := tmnc(ys); * assert y s =  (dy/dx)xi + 1/2 = yt + 1/2 * 
display(xi,yi); 
ys := ys + [dy/dx] 

end 

Representa t ion  change. Algorithm A3 is fur ther  t ransformed by breaking ys 
into integer and fractional parts: y~i, which will take on only integer values, and 
y~f, which will hold only fractional values. Thus  

y~ = y~i + ysf (2) 

0 <_y~r< 1. (3) 

This substi tution requires tha t  the incremental  step (y~ := y~ + [dy/dx])  be 
changed to add the increment  to the fractional par t  (ysr) and then  test  whether  
the result exceeds 1 (i.e., to see if it is no longer fractional). 

A4 

va t  ysf: exactreal; dx, dy, xi, ysi: integer; 
ysi := 0; ysf := 1/2; 
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for xi :=0 to dx do beg in  
• assert ysi + ysf = yt + 1/2 * 
display(xi,ysi); 
if  ysf + [dy/dx] _> I t h e n  beg in  

ysi := ysi + 1; 
ysf := ysf + [dy/dx -1 ]  

end e l se  begin  
ysf :-- ysf + [dy/dx] 

end 
end 

S u b s t i t u t i o n  o f  var iable .  Algor i thm A4 can  be t r a n s f o r m e d  into the  B r e s e n h a m  
a lgor i thm by  replacing the  use o f y s f  with  t h a t  of  a var iable  r :  

r = 2 dy  + 2 ( y s f -  1) dx.  (4) 

T h e  object ives  of  this t r ans fo rma t ion  are  to change  the  c o m p a r i s o n  in the  inner  
loop to a sign check  (i.e., a compar i son  wi th  0), and  to  e l iminate  division 
opera t ions  by  scaling by  2 dx.  Making  the  appropr i a t e  subs t i tu t ion  of  r into A4 
yields the  B r e s e n h a m  algor i thm:  

A5 

var  dx, dy, xi, ysi, r: integer; 
ysi := 0; r := 2*dy - dx; 
for xi := 0 to  dx do beg in  

• assert yt + 1/2 = ysi + ysf = ysi + :(r + 2dx - 2dy)/2dx * 
display(xi,ysi); 
if  r _> 0 then  beg in  

ysi := ysi + 1; 
r := r - [2*dx - 2*dy] 

end else beg in  
r := r + [2*dy] 

end 
end 

T h e  B r e s e n h a m  a lgor i thm is ideal for  i m p l e m e n t a t i o n  in h a r d w a r e  or  mic ropro-  
cessors wi th  l imited a r i thmet ic  power.  T h e  a lgo r i thm requi res  ne i the r  division 
nor  mult ipl icat ion,  and  requires  no f loa t ing-poin t  app rox ima t ions  because  all 
variables  take  on only  integer  values.  Moreover ,  r is no t  requ i red  to  ho ld  large 
values. Equa t ions  (3) and  (4) imply  

2 dy  - 2 d x  <_ r < 2 dy. (5) 

I f  0 _< dy <_ d x  <_ 2n - -  1, r is b o u n d e d  by  

- - 2  n+l  4- 2 ~ r < 2 n+ l  - 2. (6) 

T h u s  if d x  and  dy are n-bi t  posi t ive integers,  r requi res  a t  m o s t  n + 2 bi ts  in a 
two 's  c o m p l e m e n t  representa t ion .  

I n t e r p r e t a t i o n  o f  r. T h e  value  of  r is re la ted  to  the  ver t ical  e r ror  ev, t he  d is tance  
f rom the  pixel cen te r  to the  t rue  line. T h e  er rors  will be ident ical  for  all a lgor i thms  
given above,  because  the  same  sequence  of  poin ts  is genera ted .  W h e n  d i s p l a y  is 
called, ev = y~i - yt .  Using  eq. (1) to subs t i tu te  for  yt ,  and  t h e n  eq. (2) to  subs t i tu te  
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for y~, we have (1)  ( 1), 
ev = y , i  - y ,  - = y~i - Y~i + Y ~ r -  ffi ~ - Y~f. 

Applying t ransformation of eq. (4) yields 

- r  1 ely 
ev = - -  + 

2 d x  2 d x "  

The  value r is thus linearly related to ev, bu t  is offset by 1/2 due to the loop's 
initial conditions, offset by ( d y / d x )  because r has already been computed  for the  
next point along the line when d i s p l a y  is called, and scaled by 2 d x  to require 
only integral values of r. 

S u m m a r y .  All of the algorithms developed in this section compute  the same 
sequence of points (xi ,  yi) tha t  approximate  the t rue line. Mathemat ica l  and 
program transformations are used to derive efficient implementat ions.  Th e  algo- 
r i thms are usually adapted to draw lines in any oc tant  by making separate ly  
customized versions for each octant.  

4. AN n-STEP ALGORITHM 

Before exploring multipoint  algorithms, we illustrate the t ransformat ion tech- 
niques developed in the previous section by deriving an algori thm tha t  takes 
horizontal steps of n units in x. Such an algori thm will generate every  n t h  point  
on the line. We start  with an obvious variant  of AI: 

N1 

va t  yt: exactreal;  dx, dy, xi, yi, n: integer; 
for xi := 0 to dx by n do begin -. 

yt := [dy/dx]*xi; 
yi := trunc(yt + 1/2); 
display(xi,yi) 

end 

Computing yt incrementally,  and substi tuting ys = yt  + 1/2, we have a var iant  
of A3: 

N3 

var  ys: exactreal;  dx, dy, xi, yi, n: integer; 
ys := 1/2; 
for  xi := 0 to dx by n do begin 

yi := trunc(ys); 
display(xi,yi); 
ys := ys + [n*(dy/dx)] 

end 

When ys is broken into integer par t  y,i and fractional par t  y, f ,  n ( d y / d x )  m ay  also 
have an integer and fractional part.  Define the integer par t  s so tha t  0 __< n ( d y /  

dx )  - s <_ 1; the fractional par t  is then  n ( d y / d x )  - s, which a l though called 
fractional, may  actually equal 1. A value of s tha t  meets  these constraints  is s ---- 
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[n (dy /dx )J .  T h e  a lgo r i t hm becomes:  

N4 

v a t  ysf: exactreal; dx, dy, xi, ysi, n, s: integer; 
• assume s has been computed * 
ysi := 0; ysf := 1/2; 
for xi := 0 to dx b y  n do b e g i n  

display(xi,ysi); 
i f  ysf + [n* (dy/dx) - s] -> 1 t h e n  b e g i n  

ysi := ysi,+[s + 1]; 
ysf := ysf + [n*(dy/dx) - s - 1] 

end else b e g i n  
ysi := ysi + s; 
ysf :-- ysf + [n*(dy/dx) - s] 

end 
end  

T h e  next  s tep is to apply  a t r a n s f o r m a t i o n  t h a t  m a k e s  a B r e s e n h a m - l i k e  algo- 

r i thm:  r = 2n dy  + 2 ( y 8 f -  1 - s) dx.  

N5 

v a t  ysf: exactreal; dx, dy, xi, ysi, n, s, t: integer; 
• assume s and t = 2n dy - 2s dx have been computed * 

r :-- t - dx; * ysf = 1/2 implies r = 2ndy + 2(1/2 - 1 - s)dx * 
ysi :-- 0; 
for xi := 0 to dx by  n do b e g i n  "N51oop" 

display(xi,ysi); 
i f  r _ 0 t h e n  b e g i n  

ysi := ysi + [s + 1]; 
r := r - [2*dx - t] 

end  else b e g i n  
ysi := ysi ÷s; 
r : = r + t  

end  
end  "N51oop" 

Note  t h a t  th is  a lgo r i t hm is iden t i ca l  to A5 if n -- 1, s = 0. T h e  a t t e n t i v e  r eade r  
will ques t i on  w h a t  h a p p e n s  if dy  = dx,  n = 1. No te  t h a t  s is no t  d e f i n e d  to be  
[ n ( d y / d x ) J .  So by  se t t ing  s = 0 in  th is  case, t he  a s s u m p t i o n  0 ----- n ( d y / d x )  - s <_ 
1 is no t  violated.  T h e  o the r  poss ib i l i ty  for d y  = dx ,  n a m e l y  s = 1, gene ra t e s  the  
same  points ,  a l t hough  the  a lgo r i t hm is t h e n  no t  iden t ica l  to A5. I t  is i m p o r t a n t  to 
r e m e m b e r  t h a t  the  n - s t ep  a lgo r i t hm gene ra t e s  the  s ame  op t i ma l  po in t s  as the  

B r e s e n h a m  a lgor i thm.  
A m i n o r  diff icul ty wi th  N5 is the  n e e d  to c o m p u t e  s = [ n ( d y / d x ) J  a n d  t = 2n  

dy - 2s dx.  A l t h o u g h  th i s  could  be done  wi th  m u l t i p l y  a n d  divide  opera t ions ,  a 
smal l  i n c r e m e n t a l  a lgo r i t hm can  be used  to c o m p u t e  s by  i n t e r l eav ing  the  
mu l t i p l i ca t i on  and  division,  deve loped  us ing  the  s ame  pr inc ip les  s h o w n  in  A1 

t h r o u g h  Ab: 

v a t  sf: exactreal; s, i, n: integer; 
s := 0; sf := 0; 
for  i :-- 0 to  n - 1 do b e g i n  

* assert i*(dy/dx)= s + sf * 
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i f  sf + [dy/dx] _> 1 then  begin  
s : = s +  1; 
sf := sf + [dy/dx - 1] 

end  else sf := sf + [dy/dx] 
end  

This  p rogram is t rans formed by  subst i tut ing sp = ( s f -  1) dx + dy and including 
obvious calculations for t in the  following prologue for insert ion in a lgor i thm N5: 

N5p 

v a r  dx, dy, s, t, sp, i, n: integer; 
begin "N5prologue" 
s :=  0 ; t : =  0; 
sp := dy - dx; 
for  i := 0 to n - 1 do begin  

• assert i(dy/dx) = s + (sp + dx - dy)/dx * 
t := t + [dy + dy]; * to form 2ndy term * 
i f  sp _> 0 t h e n  begin  

s : = s + l ;  
t := t -- [dx + dx]; * to form -2sdx term * 
sp:= sp - [dx - dy] 

end  e l se  sp := sp + dy 
end  
end "N5prologue" 

This  prologue has  the  effect of one division and three  multiplications,  all of  which 
are inter leaved in a single loop. For  fur ther  efficiency, the loop m a y  be unwound;  
for small  n, it m a y  be unwound entirely. 

5. MULTIPOINT ALGORITHMS 

This  section develops l ine-drawing a lgor i thms tha t  are capable  of  high speed by  
generat ing several  points  on a line a t  once. These  a lgor i thms are useful if a f rame  
buffer display can write several  pixels in one operat ion,  or  if lines mus t  be 
approx imated  with special charac ters  [10]. T h e  t ransformat ions  i l lustrated in the  
preceding sections are used extensively in deriving these  algori thms.  T h e y  allow 
the algori thm to be s ta ted  in conceptual ly  s imple t e rms  and then  t r ans fo rmed  
into one tha t  can be efficiently implemen ted  with integer  ar i thmet ic .  T o  save 
space, the derivat ions in this section skip m a n y  of the s teps i l lustrated in previous  
sections, bu t  the  techniques are the same. 

A related class of a lgor i thms generates  mult iple  points  on a line in order  to 
form a compac t  encoding of the  point  sequences,  using techniques  akin  to run  
coding [5, 6, 8, 12, 13]. T h e  lengths of mul t ipoin t  sequences selected by  these  
a lgori thms are de te rmined  by  the length of repeat ing  pa t t e rns  in the  point  
sequences. T h e  object ive of mul t ipoin t  a lgori thms given in this section is r a the r  
different, namely  to generate  points  on the  line in fixed length sequences; the  
length is de te rmined  by  the n u m b e r  of  pixels t ha t  can be wri t ten  into the  f rame  
buffer at  once. While variable length sequences obta ined f rom a run-coding 
a lgor i thm could be broken  down into fixed length sequences  tha t  m a t c h  the  
configuration of the  f rame buffer  memory ,  more  efficient a lgor i thms are obta ined  
by designing the a lgori thms f rom the outset  to genera te  fixed length sequences.  
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5.1 The  (n, n) Algorithm 

T h e  n-s tep a lgor i thm deve loped  in Sec t ion  4 is the  basis for  a paral le l  a lgor i thm:  
opera te  n copies of  the  p rocedure ,  each  genera t ing  poin ts  spaced  n uni ts  apar t ;  
hence  the  n a m e  (n, n). E a c h  copy  of  the  a lgor i thm is phased sl ightly differently:  
the  copy  wi th  phase ffi 0 genera tes  poin ts  at  x ffi 0, n, 2n . . . .  ; t he  copy  withphase 
= 1 genera tes  poin ts  a t  x = 1, n + 1, 2n + 1 . . . .  ; and  so on. Th i s  t e chn ique  (cf. 
A1) is s imply  expressed as: 

P1 

v a r  phase: integer; 
for phase :=  0 to  n - 1 do p a r b e g i n  

v a r  xi, yi: integer; yt: exactreal; * These variables are duplicated for each phase. * 
for  xi := 0 + phase to  dx b y  n do beg in  

yt :=  [dy/dx]*xi; 
yi :-- t runc(yt  + [1/2]); 
display(xi, yi) 

e n d  
p a r e n d  

T h e  bracke t ing  p a r b e g i n  and  p a r e n d  m e a n  t h a t  the re  are  n paral le l  copies  of  
the  inner  loop, each  opera t ing  wi th  a different  value  of phase and  wi th  sepa ra te  
copies of  the  local  var iables  xi, yi, and  yt. We now p roceed  wi th  t r ans fo rma t ions  
d e m o n s t r a t e d  in Sec t ions  3 and  4, ob ta in ing  first P3, a va r i an t  of  N3: 

P3 

var  phase: integer 
for  phase :=  0 to  n - 1 do p a r b e g i n  

v a r  xi, yi: integer; ys: exactreal; * These variables are duplicated for each 
phase.* 

P5 

v a r  dx, dy, s, t, n, sp, i, phase: integer; 
beg in  "N5prologue" • Prologue is identical to N5p, above. * 
s : f 0 ; t : = 0 ;  
sp :=  d y -  dx; 
for i :ffi 0 to  n - 1 do beg in  

• assert i(dy/dx) ffi s + (sp + dx - dy)/dx * 
t :-- t + [dy + dy]; 
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ys :-- [dy/dx]*phase + 1/2; 
for  xi :-- 0 + phase to  dx b y  n do  begin  

yi :=  trunc(yt); 
display(xi, yi); 
yt  :-- yt + [n*(dy/dx)] 

e n d  
p a r e n d  

T h e  inner  loop is now t r a ns fo rm e d  into one  a lmos t  ident ical  to  the  inner  loop of  
N5; on ly  the  i te ra t ion of  xi is different.  T h e  initial c o m p u t a t i o n  for ys requi res  a 
mul t ip ly /d iv ide ,  wh ich  is t r a n s fo rm e d  into a loop execu ted  phase t imes  to  
c o m p u t e  initial values  for ysi and  r. Th i s  loop is c o m b i n e d  wi th  the  p ro logue  
(N5p) to  c o m p u t e  values  for  s and  t. T h e  final resul t  is P5: 
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if sp --> 0 then begin 
s : = s + l ;  
t := t - [dx + dx]; 
sp := sp - [dx - dy] 

end else sp := sp + dy 
end 
end "N5prologue" 

for phase := 0 to n - 1 do parbegin  
var  xi, ysi, r, i: integer; * These variables are duplicated for each phase. • 
begin "P5init" * Computes initial values for r and ysi * 

r : =  t -  dx; 
ysi := 0; 
for i := 0 to phase - 1 do 

ff r _ [t - 2* dy] then begin 
ysi := ysi + 1; 
r := r -  [2* d x -  2* dy] 

end else r := r + [2* dy] 
end "P5init" 

for xi := 0 + phase to dx by n do begin "PSloop" 
• Identical to N51oop, above. • 
display(xi, ysi); 
if r >_ 0 then begin 

ysi := ysi + [s +1];  
r :ffi r -  [2* d x -  t] 

end else begin 
ysi :ffi ysi + s: 
r : - - r + t  

end 
end "P51oop" 

parend 

For greater efficiency, both the N5prologue and P5init loops may  be profitably 
unwound. The  P5init block computes  initial values for r and ysi for each phase; 
for more efficiency, the P5init loop can be executed n times outside the phase 
loop and can pass to the P51oop values for r and ysi corresponding to each phase. 
Notice tha t  the P5init loop bears a strong resemblance to the one-step Bresenham 
algorithm, A5; the difference arises because of the slightly different expressions 
for r. 

5 2  The (1, n) Algori thm 

The second algorithm capable of exploiting parallelism uses the n-step algorithm 
to find points on the line at  n-unit  intervals and fills points in between with a 
stroke. The  n pixels in each stroke can be writ ten in parallel. This technique is 
useful when lines must  be approximated with characters  because a raster display 
or printer is controlled by a character  generator; the characters  are simply short  
strokes. 

The  algorithm is easily derived from N5. In  the inner loop, the test  on r 
determines whether  the line rises by s + 1 or s units for a move of n units in x. If  
the line rises by s + 1 units, a stroke tha t  rises s + 1 units in n is drawn from the 
current (x, y) point. The  stroke is determined by an index i tha t  gives its rise in 
y, i = 0, 1 . . . . .  n. The  strokes may  be precomputed  using the Bresenham 
algorithm, as shown in Figure 3 for n ffi 8. Note  tha t  each stroke has only n points 
(x = 0, 1 . . . . .  n - 1), but  tha t  the rise associated with a stroke is tha t  of the 
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Fig. 3. T h e  nine different s t rokes  for n = 8. T h e  left co lumn shows rises of 0 (bottom),  1, 2, 3, and  4 
(top). T h e  r ight  co lumn shows rises of 5 (bottom),  6, 7, and  8 (top). T h e  origin of a s t roke is ma rked  

wi th  a + and  the  origin of the  next  s t roke with a x .  

(n + 1)th point (x = n). This convention is adopted because algorithm N5 
computes the rise to the origin of the next stroke ra ther  than  the rise to the end 
of the current stroke. 

In order to draw lines of arbitrary length, the last stroke on the line may  be 
only a partial stroke. The  standard stroke is simply truncated:  only the first few 
points on it are actually displayed. This is illustrated by the procedure 
DisplayStroke, which accesses an array Stroke[i, x] to find the y coordinate of a 
pixel given the stroke rise i and the x coordinate relative to the beginning of the 
stroke. 

p r o c e d u r e  DisplayStroke(originX, originY, rise, maxX: integer); 
va t  x: integer; 

for  x := 0 to maxX do parbegin 
display(originX + x, originY + Stroke[rise, x]) 

p a r e n d ;  

Note that  the individual pixels of the stroke are written in parallel. In the 8 × 8 
display [14], the DisplayStroke function requires only two memory  cycles (n = 
8), one to read the stroke pat tern  and one to write it, possibly truncated,  at  an 
arbitrary position in the frame buffer. 

This procedure can be incorporated into N5 to yield the complete line-drawing 
algorithm Q (the algorithm is shown without  the prologue N5p): 

Q 
v a r  dx, dy, xi, ysi, s, t, r: integer; 
* Insert N5p here to compute s and t * 
r : - -  t -  dx; 
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Fig. 4. 

. . . . . .  ° ° ° 

. . . . . . . .  X 

F o u r  of  t h e  e i g h t  d i f f e r en t  s t r o k e s  w i t h  n = 8 a n d  a r i se  of  1. 

ysi :---- O; 
for xi := 0 to dx by  n do begin 

i f  r ~ 0 t h e n  begin 
DisplayStroke(xi, ysi, s + 1, min(n - 1, dx - xi)) 
ysi := ysi + [s + 1]; 
r := r -  [2* d x -  t] 

e n d  else begin 
DisplayStroke(xi, ysi, s, min(n - 1, dx - xi)) 
ysi := ysi + s; 
r : = r + t  

e n d  
e n d  

While algori thm Q is substantially simpler than  algori thm P5, it does not  
generate optimal lines. Although the stroke origins lie within 1/2 unit  of the t rue 
line, the other  points along the stroke may  err  by as much  as 1 unit. This  p roper ty  
arises because the y coordinate of a pixel is the sum of two independent  compu- 
tations, the position of the stroke origin and the position of the pixel within the 
stroke, each of which may make an error  of 1/2. An example of a vertical error  of 
0.913 occurs at  x = 18 in the line with d x  = 23, d y  = 18. Another  way to see the  
nonoptimali ty of Q is to observe tha t  a l though only a single stroke is displayed 
for each distinct rise in y, there  are actually several different strokes with the 
same rise (Figure 4). 

While it might  be tempting to devise an algori thm tha t  chooses the op t imum 
stroke based on the value of r, this proves difficult in practice. T h e  op t imum 
stroke depends on the distance from the stroke origin to the t rue line, a distance 
related to the value of r. But  the scaling of r tha t  makes it convenient  for the 
line-drawing calculation makes it inconvenient  to index a table of strokes; r would 
have to be divided by the scale factor, a computa t ion  whose expense is not  in 
keeping with our performance expectations. T h e  topic is discussed in more  detail 
by Gupta [9] 

Even though algorithm Q produces nonopt imal  lines, the endpoint  of the line 
is always exact. The  appendix contains a proof  of this fact. 

Before leaving the subject  of stroke selection, we should ment ion tha t  it is 
essential to have algori thm Q choose one of two strokes, r a the r  than  merely  
position the origin of a single stroke with a rise of s. If  a single stroke is placed 
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6 

O 
Fig. 5. Lines illustrating gaps and nomnonotonicities that  occur when only one kind of stroke is used 
to draw a line (n =8). The top line ( d x  = 23, d y  = 18) is drawn with 3 strokes with a rise of 6, which 
leave a gap. The small dots show the optimal line. The bot tom line ( d x  = 23, d y  = 5) shows a 

nonmonotonicity when 3 strokes with a rise of 2 are used. 

repeatedly to display an entire line, the maximum deviation from the optimal 
line may be greater than 1 or the line may have gaps or nonmonotonicities, as 
illustrated in Figure 5. 

6. CONCLUSION 

The early sections of this paper show how simple mathematical and program 
transformations can be used to transform an obvious line-drawing method based 
on analytic geometry into an efficient and exact algorithm that  requires only 
integer arithmetic. These methods help persuade us that  the algorithm is correct 
without recourse to geometric constructions used by Bresenham [4]. The tech- 
niques are examples of routine program transformations that should be a com- 
monplace activity in program design and implementation. 

The main reason for applying these techniques is to extend line-drawing 
algorithms to write several points on a line at once. Although only two multipoint 
schemes are explored in Section 5, one can imagine many more. The difficulty of 
developing such algorithms is substantially reduced by using program transfor- 
mations. 

APPENDIX 

We demonstrate that the (1, n) algorithm terminates at the proper endpoint 
(dx ,dy) .  Assume d x  >_ d y  >_ O, let z = a x  + by be the measure of distance from the 
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line, and fur ther  let a = 2 dy, b = - 2  dx.  Define yi to be the y coordinate  of  the  
pixel displayed a t  x = i; zi is the  distance f rom this pixel to the  t rue line. 

T h e  Bresenham algori thm tha t  generates  the  origin for a s t roke will guarantee  
tha t  I z , i l  <- - b / 2 .  The  points  x = ni  + j f o r j  = 1 to n are m e m b e r s  of one of the  
two strokes tha t  represent  a line of slope s /n ,  where s is the  vert ical  distance 
f rom the origin of the  s t roke to the origin of  the  next  s t roke (i.e., s = yni+n - -  y n i ) .  

I f  these pixels are genera ted  by  a B r e s e n h a m  algor i thm aiming a t  a line of slope 
s /n ,  then  we will have  Iz ,  i+j - ( j /n ) ( zn i+,  - Zni) ] ~ - b / 2 ,  for 0 _ j  _< n - 1. We 
consider two cases: first, t ha t  the expression is positive, and second, t ha t  it is 
negative. 

1. We have  Zni+y <-- ( j / n ) ( Z n i + n  - -  Z n i )  - -  b/2.  From the tr iangle inequality,  we 
also have  ] z , i+, - Znil <-- - b .  However ,  the equal i ty  case never  occur s - - i f  it did, 
the slope of the  line would be an integer  mult iple  of  1 / n  and the  z~i would be zero 
for all i. So we now have  I Zni+~ -- Z,i] < - b .  For  1 <_ j <_ n /2 ,  this  yields Zni+y < 
~ b .  

2. The  negative case, by  similar  a rgument ,  gives Zni+i > b for 1 <_j <_ n /2 .  

Both  cases together  I z,i+jl < - b  for 1 <_ j <_ n /2 .  By a similar  a rgumen t  
approaching f rom the o ther  side (i.e., x = n i  + n, n i  + n - 1 . . . .  ), we obta in  
Iz,i-j] < - b  for 1 <_ j <_ n /2 .  Both  forward and backward  approaches  toge ther  
give [Zni+jI < - b f o r  1 <_j<_n. 

When x = dx,  at  the endpoint  of the  line, we mus t  have  ]Zdx [ < - b ,  which, 
together  with the fact  tha t  z mus t  be a mult iple  of  b, forces Zdx = 0. Therefore ,  
the last  point  lies exactly on the line. 

ACKNOWLEDGMENTS 

This  paper  grew f rom a t t em p t s  to write fast  l ine-drawing microcode for the  
"8 × 8 display," designed by  Ivan  Suther land  and the  author.  Sat ish  Gup ta  
devoted considerable coding effort  to this display and to s imulat ions of  the  (1, n) 
method.  The  proof  in the appendix  is due to Mike Spreitzer.  M a r y  Shaw and 
referees offered several  helpful com m en t s  on the  manuscr ip t .  

REFERENCES 
1. AHO, A.V. AND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading, Mass., 

1977. 
2. AHO, A.V. AND ULLMAN, J.D. The Theory of Parsing, Translation, and Compiling. Vol. 2, 

Compiling. Prentice-Hall, Englewood Cliffs, N.J., 1973. 
3. BENTLEY, J.L. Writing Efficient Programs. Prentice-Hall, Englewood Cliffs, N.J. 1982. 
4. BRESENHAM, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 1 (Jan. 

1965), 25-30. 
5. BRESENHAM, J.E. Incremental line compaction. Comput. J. 25, 1 (Feb. 1982), 116-120. 
6. CEDERBERG, R.L.T. A new method for vector generation. Comput. Gr. Image Proc. 9, 2 (Feb. 

1979), 183-195. 
7. DARLINGTON, J. AND BURSTALL, R.M. A system which automatically improves programs. Acta 

Inf. 6, 1 (1976), 41-60. 
8. EARNSHAW, R.A. Line tracking for incremental plotters. Comput. J. 23, 1 (Feb. 1980), 46-52. 
9. GUPTA, S. Architectures and algorithms for parallel updates of raster-scan displays. Tech. Rep. 

CMU-CS-82-111, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh, Pa., Dec. 1981. 

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982. 



Using Program Transformations to Derive Line-Drawing Algorithms 273 

10. JORDAN, B.W., JR., AND BARRETT, R.C. A cell organized raster display for line drawings. 
Commun. ACM 17, 2 (Feb. 1974), 70-77. 

11. KNUTH, D.E. Structured programming with go to statements. Comput. Surv. 6, 4 (Dec. 1974), 
261-301. 

12. PITTEWAY, M.L.V. AND GREEN, A.J.R. Bresenham's algorithm with run line coding shortcut. 
Comput J. 25, 1 (Feb. 1982), 114-115. 

13. REGGIORI, G.B. Digital Computer Transformations for Irregular Line Drawings," Dept. of 
Electrical Engineering, New York Univ., Bronx, N.Y., April 1972, pp. 46-61. Available as U.S. 
Dept. of Commerce AD-745-015. 

14. SPROULL, R.F., SUTHERLAND, I.E., THOMPSON, A., GUPTA, S., AND MINTER, C. The 8 × 8 
display. Tech. Rep. CMU-CS-82-105, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh, 
Pa., Dec. 1981. 

Received April 1981; revised April 1982; accepted September 1982 

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982. 


