Using Program Transformations to Derive
Line-Drawing Algorithms

ROBERT F. SPROULL
Carnegie-Mellon University

A wide variety of line-drawing algorithms can be derived by applying program transformations to a
simple, obviously correct algorithm. The transformations increase the speed of the algorithm and
eliminate the need for floating-point computations. We show how Bresenham’s algorithm can be
derived in this way. The transformations are then used to derive several variants of Bresenham’s
algorithm, designed for use on displays that can generate more than one pixel at a time. The treatment
shows a complete, extended example of the practical use of program transformations.

Categories and Subject Descriptors: D.1 [Software]: Programming Techniques; 1.3.3 [Computer
Graphics]: Picture/Image Generation—display algorithms

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Program transformation, line-drawing, raster graphics

1. INTRODUCTION

Many computer graphics devices use line-drawing algorithms to approximate
straight lines by displaying dots that are constrained to lie on a discrete grid.
Incremental pen plotters that move a pen in small steps require such a line-
generation algorithm. Point-plotting CRT displays and electrostatic plotters use
the algorithms to approximate straight lines. More recently, frame buffer, raster
scan displays use these algorithms to identify the picture elements (pixels) that
should be illuminated to display a line.

Simplicity and speed are the key design criteria for line-drawing algorithms
because the computations are often implemented in hardware in order to achieve
high line-generation speeds. It appears that the early popularity of the binary
rate multiplier (BRM) was due entirely to simplicity, for it generates rather poor
approximations to straight lines. The digital differential analyzer (DDA) gener-

This research was sponsored by the Defense Advanced Research Projects Agency, ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551.

The views and conclusions contained in this paper are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

Author’s present address: Xerox Corporation, Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304. .

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1982 ACM 0730-0301/82/1000-0259 $00.75

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982, Pages 259-273.

260 . Robert F. Sproull

ates better approximations to the true line, but requires an iterative loop that
may average almost two cycles to generate each point. An algorithm devised by
J. E. Bresenham [4] dominates the DDA: it generates the optimal line, in the
sense described in Section 2; it requires only integer additions and subtractions;
and it generates one output point for each iteration of the inner loop.

To achieve very high line-generation speeds, an algorithm must compute the
location of several points on a line at once. Such multipoint algorithms have
several applications, chiefly in raster scanned systems that can write more than
one pixel at a time into the image. The investigation of multipoint algorithms
was motivated by the 8 X 8 frame-buffer display [14], which can in one memory
cycle write a square region with 8 pixels on a side located anywhere on the screen.

This paper shows how simple program transformations are used to derive all of
these algorithms, starting from obviously correct algorithms based on simple
analytic geometry. These transformations assure us that the more efficient but
more complex algorithms are correct, because they have been derived by correct
transformations from a correct algorithm. Transformation techniques of different
sorts are used in optimizing compilers [1, 2], are recommended to programmers
for improving their programs [3, 11], and are part of research into automatic
program improvement [7].

2. LINE-DRAWING PRELIMINARIES

The line-drawing problem is to determine a set of pixel coordinates (x, y), where
x and y are integers, that closely approximates the line from the point (0, 0) to
the point (dx, dy), for integer values of dx and dy. The assumption that one line
endpoint is at the origin loses no generality because lines with other origins are
simply translations of the line with origin (0, 0). Additionally, lines are restricted
to the first octant: 0 =< dy = dx. Again, this assumption loses no generality
because an arbitrary line can be generated by éx:ansposing the canonical line or
by reflecting it about one of the principal axes.

The objective of a line-drawing algorithm is to enumerate those pixels that lie
close to the true line, the mathematical line from (0, 0) to (dx, dy). Figure 1
illustrates a typical line, showing with circles the pixels that correspond either to
spots illuminated by a CRT beam on a raster display or to the swath of a plotter
pen. Notice that integral values of coordinates locate pixel centers.

While a line may be displayed using many different pixel configurations, one
configuration is usually preferred. The preference arises because some configu-
rations approximate the true line more closely than others, some appear to have
more uniform pixel density, or brightness, than others, and so on. Many of the
algorithms presented in this paper generate the optimal line, defined as follows:

1. The optimal line illuminates exactly one pixel in each vertical column. This
assumption depends on the fact that the line’s extent in x exceeds its extent
in y. The purpose of this choice is to limit variations in pixel spacing.

2. Within each column, the pixel illuminated is the one closest to the true line.

To display the optimal line, the line-drawing algorithm must compute, for each
integer x;, the coordinate y; of the pixel that should be illuminated. The coordinate
y: of the true line is simply y. = (dy/dx)x;. llluminating a pixel centered at y;

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982,

Using Program Transformations to Derive Line-Drawing Algorithms . 261

Fig. 1. The line from (0, 0) to (8, 5). Small dots represent pixel centers. The solid line represents
the true line. Circles show the pixels that are illuminated to display the optimal line.

dx

Fig. 2. Illustration of the relationship between the vertical distance e, and the perpendicular
distance e,.

introduces an error e, = y; — y; = y; — (dy/dx)x;, measured along the y-axis. The
error e, measured perpendicular to the line can be determined using similar
triangles (Figure 2): e, = (dx/(dx* + dy®)!)e,. Thus, for any given line, e, is simply
a constant times e,. Consequently, determining y; by minimizing the error e, will
identify the pixel that is closest to the line, using either vertical or perpendicular
distance measures.

The errors can be minimized if y; is computed by rounding y.:y; = round(y.),
or equivalently, y; = trunc(y. + 1/2) = | . + 1/2]. (Recall that the floor function,
Lx], denotes the greatest integer less than or equal to x.) With this choice, e, =
Ly:+1/2] — y;, 50 =1/2 < e, < 1/2.

3. DERIVATION OF THE BRESENHAM ALGORITHM

The minimum error formulation of the optimal line leads directly to a simple
algorithm that enumerates all the points on the optimal line, and which can be
expressed in a PASCAL-like language:

Al

var yt: exactreal; dx, dy, xi, yi: integer;
for xi := 0 to dx do begin
yt = [dy/dx]*xi;
yi = trunc(yt + [1/2]);
display(xi,yi)
end

Although this procedure is expressed using programming language constructs, it
requires that precise real arithmetic be used; floating-point approximations are

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

262 . Robert F. Sproull

not permitted. To emphasize this precise arithmetic, variables that use it are
declared to have type exacireal. Square brackets enclose expressions whose
values do not change during iteration of the loop; these expressions can be
computed only once, before the loop is entered, and saved in temporary variables.
We shall also maintain that multiplications by a power of two do not require
multiplication operations, but can be achieved by addition or arithmetic shifting.

Strength reduction. The next version of the algorithm is derived from Al by
observing that y, can be calculated incrementally by adding the quantity (dy/dx)
on each iteration. Converting multiplications into repeated additions is one of a
number of incremental techniques used frequently in computer graphics algo-
rithms. These techniques make incremental changes to the state of an algorithm
or data structure rather than recomputing a result from scratch.

A2

var yt: exactreal; dx, dy, xi, yi: integer;

yt:=0;

for xi := 0 to dx do begin
yi := trunc(yt +[1/2]); * assert yt = (dy/dx)xi *
display (xi,yi);
yki= yt + [dy/dx]

end

Substitution of variable. A simple transformation substitutes
Ys =Y+ 1/2. ' (1)
A3
var ys: exactreal; dx, dy, xi, yi: integer;
ys = 1/2;

for xi := 0 to dx do begin
yi := trunc(ys); * assert ys = (dy/dx)xi + 1/2 =yt + 1/2

display(xi,yi);
ys = ys + [dy/dx]
end

Representation change. Algorithm A3 is further transformed by breaking y.
into integer and fractional parts: y.;, which will take on only integer values, and
ysr, which will hold only fractional values. Thus

Ys = Ysi + Vst (2)
O0=<ys<1l. 3)

This substitution requires that the incremental step (ys := y, + [dy/dx]) be
changed to add the increment to the fractional part (y,) and then test whether
the result exceeds 1 (i.e., to see if it is no longer fractional).

A4

var ysf: exactreal; dx, dy, xi, ysi: integer;
ysi ;= 0; ysf 1= 1/2;

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982,

Using Program Transformations to Derive Line-Drawing Algorithms . 263

for xi :=0 to dx do begin
» assert ysi + ysf = yt + 1/2 »
display(xi,ysi);
if ysf + [dy/dx] = 1 then begin
ysi=ysi + 1;
ysf := ysf + [dy/dx —1]
end else begin
ysf := ysf + [dy/dx]
end
end

Substitution of variable. Algorithm A4 can be transformed into the Bresenham
algorithm by replacing the use of y, with that of a variable r:

r=2dy+ 2(ys— 1) dx. 4)

The objectives of this transformation are to change the comparison in the inner
loop to a sign check (i.e., a comparison with 0), and to eliminate division
operations by scaling by 2 dx. Making the appropriate substitution of r into A4
yields the Bresenham algorithm:

A5

var dx, dy, xi, ysi, r: integer;
ysi = 0; r ;= 2*dy — dx;
for xi := 0 to dx do begin
= assert yt + 1/2 = ysi + ysf = ysi + :(r + 2dx — 2dy)/2dx *
display(xi,ysi);
if r = 0 then begin
ysii=ysi+ 1;
r:=r— [2*dx — 2*dy]
end else begin
r:=r + [2*dy]
end
end

The Bresenham algorithm is ideal for implementation in hardware or micropro-
cessors with limited arithmetic power. The algorithm requires neither division
nor multiplication, and requires no floating-point approximations because all
variables take on only integer values. Moreover, r is not required to hold large
values. Equations (3) and (4) imply

2dy—-2dx<r<2dy. (5)
If0=dy=<dx=2"-1,ris bounded by
-2+ 2= r< 2™ =2, (6)

Thus if dx and dy are n-bit positive integers, r requires at most n + 2 bits in a
two’s complement representation.

Interpretation of r. The value of r is related to the vertical error e,, the distance
from the pixel center to the true line. The errors will be identical for all algorithms
given above, because the same sequence of points is generated. When display is
called, e, = ¥, — y;. Using eq. (1) to substitute for y;, and then eq. (2} to substitute

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

264 . Robert F. Sproull

for y,, we have

1 1 1
€y = Yai — ys"'E = Ysi — ysi+ysf—§ =§_ysf-

Applying transformation of eq. (4) yields

_ T 1+dy
T 2dx 2 dx’

The value r is thus linearly related to e,, but is offset by 1/2 due to the loop’s
initial conditions, offset by (dy/dx) because r has already been computed for the
next point along the line when display is called, and scaled by 2 dx to require
only integral values of r.

€y

Summary. All of the algorithms developed in this section compute the same
sequence of points (x;, y;} that approximate the true line. Mathematical and
program transformations are used to derive efficient implementations. The algo-
rithms are usually adapted to draw lines in any octant by making separately
customized versions for each octant.

4. AN n-STEP ALGORITHM

Before exploring multipoint algorithms, we illustrate the transformation tech-
niques developed in the previous section by deriving an algorithm that takes
horizontal steps of »n units in x. Such an algorithm will generate every nth point
on the line. We start with an obvious variant of Al:

N1

var yt: exactreal; dx, dy, xi, yi, n: integer;
for xi := 0 to dx by n do begin

yt := [dy/dx]"xi;

yi := trunc(yt + 1/2);

display(xi,yi)
end

Computing y; incrementally, and substituting y; = y, + 1/2, we have a variant
of A3:

N3
var ys: exactreal; dx, dy, xi, yi, n: integer;
ys = 1/2;

for xi := 0 to dx by n do begin
yi ;= trunc(ys);
display(xi,yi);
ys :=ys + [n*(dy/dx)]

end

When y, is broken into integer part y.; and fractional part y.;, n(dy/dx) may also
have an integer and fractional part. Define the integer part s so that 0 < n(dy/
dx) — s < 1; the fractional part is then n(dy/dx) — s, which although called
fractional, may actually equal 1. A value of s that meets these constraints is s =

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982,

Using Program Transformations to Derive Line-Drawing Algorithms . 265

|n(dy/dx)]. The algorithm becomes:
N4

var ysf: exactreal; dx, dy, xi, ysi, n, s: integer;
* assume s has been computed *
ysi = 0; ysf := 1/2;
for xi ;= 0 to dx by n do begin
display(xi,ysi);
if ysf + [n*(dy/dx) — s] = 1 then begin
ysi = ysi,+[s + 1];
ysf := ysf + [n*(dy/dx) — s — 1]
end else begin

ysi ;= ysi + s;
ysf := ysf + [n*(dy/dx) — s]
end

end

The next step is to apply a transformation that makes a Bresenham-like algo-
rithm: r = 2n dy + 2(ys— 1 — s) dx.

N5

var ysf: exactreal; dx, dy, xi, ysi, n, s, t: integer;
* assume s and t = 2n dy — 2s dx have been computed *
r:=t—dx; » ysf = 1/2 implies r = 2ndy + 2(1/2 — 1 — s)dx *
ysi = 0;
for xi := 0 to dx by n do begin “Nb5loop”
display(xi,ysi);
if r = 0 then begin
ysi:=ysi+ [s + 1];
r:=r— [2%dx — t]
end else begin
ysi := ysi +s;
r=r+t
end
end “N5loop”

Note that this algorithm is identical to A5 if n = 1, s = 0. The attentive reader
will question what happens if dy = dx, n = 1. Note that s is not defined to be
Ln(dy/dx)]. So by setting s = 0 in this case, the assumption 0 < n(dy/dx) — s =
1 is not violated. The other possibility for dy = dx, namely s = 1, generates the
same points, although the algorithm is then not identical to A5. It is important to
remember that the n-step algorithm generates the same optimal points as the
Bresenham algorithm.

A minor difficulty with N5 is the need to compute s = [n(dy/dx)] and ¢ = 2n
dy — 2s dx. Although this could be done with multiply and divide operations, a
small incremental algorithm can be used to compute s by interleaving the
multiplication and division, developed using the same principles shown in Al
through A5:
var sf: exactreal; s, i, n: integer;
s:=0; sf :=0;
fori:=0ton — 1do begin

» assert i*(dy/dx)=s + sf »

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

266 . Robert F. Sproull

if sf + [dy/dx] = 1 then begin
s:=8++1;
sf ;= of + [dy/dx — 1]
end else sf := sf + [dy/dx]
end

This program is transformed by substituting sp = (sf — 1) dx + dy and including
obvious calculations for ¢ in the following prologue for insertion in algorithm Nb:

Nb5p

var dx, dy, s, t, sp, i, n: integer;
begin “N5prologue”
s:=0;t:=0;
sp = dy — dx;
fori:=0ton — 1do begin
+ assert i(dy/dx) = s + (sp + dx — dy)/dx *
t:=t+ [dy + dy]; * to form 2ndy term *
if sp = 0 then begin
s:=s+ 1;
t:=t - [dx + dx]; * to form —2sdx term *
sp:= sp — [dx — dy]
end else sp ;= sp + dy
end
end “Nb5prologue”

This prologue has the effect of one division and three multiplications, all of which
are interleaved in a single loop. For further efficiency, the loop may be unwound;
for small n, it may be unwound entirely.

5. MULTIPOINT ALGORITHMS

This section develops line-drawing algorithms that are capable of high speed by
generating several points on a line at once. These algorithms are useful if a frame
buffer display can write several pixels in one operation, or if lines must be
approximated with special characters [10]. The transformations illustrated in the
preceding sections are used extensively in deriving these algorithms. They allow
the algorithm to be stated in conceptually simple terms and then transformed
into one that can be efficiently implemented with integer arithmetic. To save
space, the derivations in this section skip many of the steps illustrated in previous
sections, but the techniques are the same.

A related class of algorithms generates multiple points on a line in order to
form a compact encoding of the point sequences, using techniques akin to run
coding [5, 6, 8, 12, 13]. The lengths of multipoint sequences selected by these
algorithms are determined by the length of repeating patterns in the point
sequences. The objective of multipoint algorithms given in this section is rather
different, namely to generate points on the line in fixed length sequences; the
length is determined by the number of pixels that can be written into the frame
buffer at once. While variable length sequences obtained from a run-coding
algorithm could be broken down into fixed length sequences that match the
configuration of the frame buffer memory, more efficient algorithms are obtained
by designing the algorithms from the outset to generate fixed length sequences.

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms . 267

5.1 The (n, n) Algorithm

The n-step algorithm developed in Section 4 is the basis for a parallel algorithm:
operate n copies of the procedure, each generating points spaced n units apart;
hence the name (n, n). Each copy of the algorithm is phased slightly differently:
the copy with phase = 0 generates points at x = 0, n, 2n, . . . ; the copy with phase
= 1 generates points at x = 1, n + 1, 2n + 1, ... ; and so on. This technique (cf.
Al) is simply expressed as:

P1

var phase: integer;
for phase := 0 to n — 1 do parbegin
var xi, yi: integer; yt: exactreal; * These variables are duplicated for each phase.
for xi := 0 + phase to dx by n do begin
yt = [dy/dx]*xi;
yi := trunc(yt + [1/2]);
display(xi, yi)
end
parend

The bracketing parbegin and parend mean that there are n parallel copies of
the inner loop, each operating with a different value of phase and with separate
copies of the local variables xi, yi, and yt. We now proceed with transformations
demonstrated in Sections 3 and 4, obtaining first P3, a variant of N3:

P3

var phase: integer
for phase := 0 to n — 1 do parbegin
var xi, yi: integer; ys: exactreal; * These variables are duplicated for each
phase.*
ys := [dy/dx]*phase + 1/2;
for xi := 0 + phase to dx by n do begin
yi := trunc(yt);
display(xi, yi);
yt:=yt + [n*(dy/dx)]
end
parend

The inner loop is now transformed into one almost identical to the inner loop of
NB5; only the iteration of xi is different. The initial computation for ys requires a
multiply/divide, which is transformed into a loop executed phase times to
compute initial values for ysi and r. This loop is combined with the prologue
(N5p) to compute values for s and ¢ The final result is P5:

P5

var dx, dy, s, t, n, sp, i, phase: integer;
begin “N5prologue” * Prologue is identical to N5p, above. *
s:=0;t:=0;
sp:=dy — dx;
fori:=0ton — 1do begin
+ assert i(dy/dx) = s + (sp + dx — dy)/dx *
t:=t+ [dy + dy];

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982,

268 . Robert F. Sprouli

if sp = 0 then begin
s:=s+1;
t:=t — [dx + dx];
sp := sp — [dx — dy]
end else sp := sp + dy
end
end “N5prologue”

for phase := 0 to n — 1 do parbegin

var xi, ysi, r, i: integer; * These variables are duplicated for each phase. *
begin “P5init” * Computes initial values for r and ysi »

r:=t—dx;

ysi ;= 0;

fori:= 0 to phase — 1 do
if r = [t — 2* dy] then begin
ysi = ysi + 1;
r:=r—[2* dx — 2* dy]
end elser :=r + [2* dy]
end “P5init”

for xi := 0 + phase to dx by n do begin “P5loop”
+ Identical to N5loop, above. *
display(xi, ysi);
if r = 0 then begin
ysi:=ysi+ [s + 1];
ri=r—[2*dx —t]
end else begin
ysi 1= ysi + s:
r:i=r+t
end
end “P5loop”
parend

For greater efficiency, both the N5prologue and P5init loops may be profitably
unwound. The P5init block computes initial values for r and ysi for each phase;
for more efficiency, the P5init loop can be executed n times outside the phase
loop and can pass to the P5loop values for r and ysi corresponding to each phase.
Notice that the P5init loop bears a strong resemblance to the one-step Bresenham
algorithm, A5; the difference arises because of the slightly different expressions
for r.

5.2 The (1, n) Algorithm

The second algorithm capable of exploiting parallelism uses the n-step algorithm
to find points on the line at n-unit intervals and fills points in between with a
stroke. The n pixels in each stroke can be written in parallel. This technique is
useful when lines must be approximated with characters because a raster display
or printer is controlled by a character generator; the characters are simply short
strokes.

The algorithm is easily derived from N5. In the inner loop, the test on r
determines whether the line rises by s + 1 or s units for a move of n units in x. If
the line rises by s + 1 units, a stroke that rises s + 1 units in n is drawn from the
current (x, y) point. The stroke is determined by an index { that gives its rise in

¥»i=0,1, ..., n. The strokes may be precomputed using the Bresenham
algorithm, as shown in Figure 3 for n = 8. Note that each stroke has only n points
(x=0,1,..., n — 1), but that the rise associated with a stroke is that of the

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms . 269
X

@ 7 - - -Ox

YO0

PPPL0000)

00000000

Fig. 3. The nine different strokes for n = 8. The left column shows rises of 0 (bottom), 1, 2, 3, and 4

(top). The right column shows rises of 5 (bottom), 6, 7, and 8 (top). The origin of a stroke is marked
with a + and the origin of the next stroke with a X.

. Ox

%,

. . .
. .

9%
o, &
O.

X

%
8
X

8

@ .
68

®
7O
3;

%

(n + 1)th point (x = n). This convention is adopted because algorithm N5
computes the rise to the origin of the next stroke rather than the rise to the end
of the current stroke.

In order to draw lines of arbitrary length, the last stroke on the line may be
only a partial stroke. The standard stroke is simply truncated: only the first few
points on it are actually displayed. This is illustrated by the procedure
DisplayStroke, which accesses an array Stroke[i, x] to find the y coordinate of a
pixel given the stroke rise i and the x coordinate relative to the beginning of the
stroke.
procedure DisplayStroke(originX, originY, rise, maxX: integer);

var x: integer;
for x := 0 to maxX do parbegin
display(originX + x, originY + Stroke[rise, x])
parend;

Note that the individual pixels of the stroke are written in parallel. In the 8 X 8
display [14], the DisplayStroke function requires only two memory cycles (n =
8), one to read the stroke pattern and one to write it, possibly truncated, at an
arbitrary position in the frame buffer.

This procedure can be incorporated into N5 to yield the complete line-drawing
algorithm Q (the algorithm is shown without the prologue N5p):

Q

var dx, dy, xi, ysi, s, t, r: integer;
* Insert N5p here to compute s and t *
r:=t—dx;

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

270 . Robert F. Sproull

COOOOOLRN
000000
COIRRRS x
G000

e e e e e e e o X

CO0000000L

Fig.4. Four of the eight different strokes with rn = 8 and a rise of 1.

ysi 1= 0;
for xi := 0 to dx by n do begin
if r = 0 then begin
DisplayStroke(xi, ysi, s + 1, min(n — 1, dx — xi))
ysi 1= ysi + [s + 1];
ri=r-—[2*dx - t]
end else begin
DisplayStroke(xi, ysi, s, min(n — 1, dx — xi))
ysi:= ysi+s;
r:=r+t
end
end

While algorithm Q is substantially simpler than algorithm P5, it does not
generate optimal lines. Although the stroke origins lie within 1/2 unit of the true
line, the other points along the stroke may err by as much as 1 unit. This property
arises because the y coordinate of a pixel is the sum of two independent compu-
tations, the position of the stroke origin and the position of the pixel within the
stroke, each of which may make an error of 1/2. An example of a vertical error of
0.913 occurs at x = 18 in the line with dx = 23, dy = 18. Another way to see the
nonoptimality of Q is to observe that although only a single stroke is displayed
for each distinct rise in y, there are actually several different strokes with the
same rise (Figure 4).

While it might be tempting to devise an algorithm that chooses the optimum
stroke based on the value of r, this proves difficult in practice. The optimum
stroke depends on the distance from the stroke origin to the true line, a distance
related to the value of r. But the scaling of r that makes it convenient for the
line-drawing calculation makes it inconvenient to index a table of strokes; r would
have to be divided by the scale factor, a computation whose expense is not in
keeping with our performance expectations. The topic is discussed in more detail
by Gupta [9]

Even though algorithm Q produces nonoptimal lines, the endpoint of the line
is always exact. The appendix contains a proof of this fact.

Before leaving the subject of stroke selection, we should mention that it is
essential to have algorithm Q choose one of two strokes, rather than merely
position the origin of a single stroke with a rise of s. If a single stroke is placed

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms . 271

O L O®
@OOO oooomo%o
@ooo)

8

Fig. 5. Lines illustrating gaps and nonimnonotonicities that occur when only one kind of stroke is used

to draw a line (n =8). The top line (dx = 23, dy = 18) is drawn with 3 strokes with a rise of 6, which

leave a gap. The smali dots show the optimal line. The bottom line (dx = 23, dy = 5) shows a
nonmonotonicity when 3 strokes with a rise of 2 are used.

repeatedly to display an entire line, the maximum deviation from the optimal
line may be greater than 1 or the line may have gaps or nonmonotonicities, as
illustrated in Figure 5.

6. CONCLUSION

The early sections of this paper show how simple mathematical and program
transformations can be used to transform an obvious line-drawing method based
on analytic geometry into an efficient and exact algorithm that requires only
integer arithmetic. These methods help persuade us that the algorithm is correct
without recourse to geometric constructions used by Bresenham [4]. The tech-
niques are examples of routine program transformations that should be a com-
monplace activity in program design and implementation.

The main reason for applying these techniques is to extend line-drawing
algorithms to write several points on a line at once. Although only two multipoint
schemes are explored in Section 5, one can imagine many more. The difficulty of
developing such algorithms is substantially reduced by using program transfor-
mations.

APPENDIX

We demonstrate that the (1, n) algorithm terminates at the proper endpoint
(dx,dy). Assume dx = dy = 0, let z = ax + by be the measure of distance from the

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

272 - Robert F. Sproull

line, and further let a = 2 dy, b = —2 dx. Define y; to be the y coordinate of the
pixel displayed at x = i; z; is the distance from this pixel to the true line.

The Bresenham algorithm that generates the origin for a stroke will guarantee
that | z.:] = —b/2. The points x = ni + j for j = 1 to n are members of one of the
two strokes that represent a line of slope s/n, where s is the vertical distance
from the origin of the stroke to the origin of the next stroke (i.e., s = Ynitn — Yni).
If these pixels are generated by a Bresenham algorithm aiming at a line of slope
s/n, then we will have |zniv; — (j/n)(Znitn — 2n:) | = —b/2, for 0 <j=<n — 1. We
consider two cases: first, that the expression is positive, and second, that it is
negative.

1. We have z,i+j < (J/n){(2ni+n — 2ni) — b/2. From the triangle inequality, we
also have | zuitn — 2n:| < —b. However, the equality case never occurs—if it did,
the slope of the line would be an integer multiple of 1/n and the z,; would be zero
for all i. So we now have | Zui+n = 24| < —b. For 1 < j < n/2, this yields zn+; <
- b.

2. The negative case, by similar argument, gives z,,+; > b for 1 <j < n/2.

Both cases together | z..+;| < —b for 1 < j < n/2. By a similar argument
approaching from the other side (i.e., x =ni + n,ni + n — 1, ...), we obtain
|2Zni-j| < =b for 1 = j = n/2. Both forward and backward approaches together
give | znsj| < —bforl <j=<n,

When x = dx, at the endpoint of the line, we must have | z4 | < —b, which,
together with the fact that z must be a multiple of b, forces z4x = 0. Therefore,
the last point lies exactly on the line.

ACKNOWLEDGMENTS

This paper grew from attempts to write fast line-drawing microcode for the
“8 x 8 display,” designed by Ivan Sutherland and the author. Satish Gupta
devoted considerable coding effort to this display and to simulations of the (1, n)
method. The proof in the appendix is due to Mike Spreitzer. Mary Shaw and
referees offered several helpful comments on the manuscript.

REFERENCES

1. AHo, A.V. AND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading, Mass.,
1977.

2. AHo, AV. aND ULLMAN, J.D. The Theory of Parsing, Translation, and Compiling. Vol. 2,
Compiling. Prentice-Hall, Englewood Cliffs, N.J., 1973.

3. BENTLEY, J.L. Woriting Efficient Programs. Prentice-Hall, Englewood Cliffs, N.J. 1982.

4. BRESENHAM, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 1 (Jan.
1965), 25-30.

5. BRESENHAM, J.E. Incremental line compaction. Comput. J. 25, 1 (Feb. 1982), 116-120.

6. CEDERBERG, R.L.T. A new method for vector generation. Comput. Gr. Image Proc. 9, 2 (Feb.
1979), 183-195.

7. DARLINGTON, J. AND BURsTALL, R.M. A system which automatically improves programs. Acta
Inf. 6,1 (1976), 41-60.

8. EaARNSHAW, R.A. Line tracking for incremental plotters. Comput. J. 23, 1 (Feb. 1980), 46-52.

9. GUPTA, S. Architectures and algorithms for parallel updates of raster-scan displays. Tech. Rep.
CMU-CS-82-111, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh, Pa., Dec. 1981.

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms . 273

10. JorbpaN, B.W., JR., AND BARRETT, R.C. A cell organized raster display for line drawings.
Commun. ACM 17, 2 (Feb. 1974), 70-77.

11. KnutH, D.E. Structured programming with go to statements. Comput. Surv. 6, 4 (Dec. 1974),
261-301.

12. PrrtEwAY, M.L.V. AND GREEN, A.J.R. Bresenham’s algorithm with run line coding shortcut.
Comput J. 25, 1 (Feb. 1982), 114-115.

13. ReceIori, G.B. Digital Computer Transformations for Irregular Line Drawings,” Dept. of
Electrical Engineering, New York Univ., Bronx, N.Y., April 1972, pp. 46-61. Available as U.S.
Dept. of Commerce AD-745-015.

14. SprouLL, R.F., SUTHERLAND, LE., THOMPSON, A., GUPTA, S., AND MINTER, C. The 8 X 8
display. Tech. Rep. CMU-CS-82-105, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh,
Pa., Dec. 1981.

Received April 1981; revised April 1982; accepted September 1982

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

