
Using Program Transformations to
Line-Drawing Algorithms

ROBERT F. SPROULL
Carnegie-Mellon University

Derive

A wide variety of line-drawing algorithms can be derived by applying program transformations to a
simple, obviously correct algorithm. The transformations increase the speed of the algorithm and
eliminate the need for floating-point computations. We show how Bresenham's algorithm can be
derived in this way. The transformations are then used to derive several variants of Bresenham's
algorithm, designed for use on displays that can generate more than one pixel at a time. The treatment
shows a complete, extended example of the practical use of program transformations.

Categories and Subject Descriptors: D.1 [Software]: Programming Techniques; 1.3.3 [Computer
Graphics]: Picture/Image Generation--display algorithms

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Program transformation, line-drawing, raster graphics

1. INTRODUCTION

M a n y c o m p u t e r graphics devices use l i ne -d rawing a lgo r i thms to a p p r o x i m a t e
s t ra igh t l ines by d isp laying dots t h a t are c ons t r a i ne d to lie on a d iscre te grid.
I n c r e m e n t a l p e n p lo t t e r s t h a t move a p e n in smal l s teps requ i re such a l ine-
gene ra t ion a lgor i thm. P o i n t - p l o t t i n g C R T displays a n d e lec t ros ta t ic p lo t t e r s use
the a lgor i thms to app rox ima te s t ra igh t lines. More recent ly , f r ame buffer, r a s t e r
scan displays use these a lgo r i thms to iden t i fy the p ic tu re e l e m e n t s (pixels) t h a t
should be i l l u m i n a t e d to d isp lay a line.

S impl ic i ty a n d speed are the key design cr i ter ia for l i ne -d rawing a lgo r i t hms
because the c o m p u t a t i o n s are of ten i m p l e m e n t e d in h a r d w a r e in order to achieve
high l i ne -gene ra t ion speeds. I t appea r s t h a t the ear ly p o p u l a r i t y of the b i n a r y
ra te mul t ip l i e r (BRM) was due en t i r e ly to s impl ic i ty , for i t gene ra t e s r a t h e r poor
app rox ima t ions to s t ra igh t lines. T h e digi tal d i f ferent ia l ana lyze r (DDA) gener-

This research was sponsored by the Defense Advanced Research Projects Agency, ARPA Order No.
3597, monitored by the Air Force Avionics Laboratory under Contract F33615-78-C-1551.
The views and conclusions contained in this paper are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.
Author's present address: Xerox Corporation, Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0730-0301/82/1000-0259 $00.75

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982, Pages 259-273.

260 • Robert F. Sproull

ates better approximations to the true line, but requires an iterative loop that
may average almost two cycles to generate each point. An algorithm devised by
J. E. Bresenham [4] dominates the DDA: it generates the optimal line, in the
sense described in Section 2; it requires only integer additions and subtractions;
and it generates one output point for each iteration of the inner loop.

To achieve very high line-generation speeds, an algorithm must compute the
location of several points on a line at once. Such multipoint algorithms have
several applications, chiefly in raster scanned systems that can write more than
one pixel at a time into the image. The investigation of multipoint algorithms
was motivated by the 8 x 8 frame-buffer display [14], which can in one memory
cycle write a square region with 8 pixels on a side located anywhere on the screen.

This paper shows how simple program transformations are used to derive all of
these algorithms, starting from obviously correct algorithms based on simple
analytic geometry. These transformations assure us that the more efficient but
more complex algorithms are correct, because they have been derived by correct
transformations from a correct algorithm. Transformation techniques of different
sorts are used in optimizing compilers [1, 2], are recommended to programmers
for improving their programs [3, 11], and are part of research into automatic
program improvement [7].

2. L INE-DRAWING PRELIMINARIES

The line-drawing problem is to determine a set of pixel coordinates (x, y), where
x and y are integers, that closely approximates the line from the point (0, 0) to
the point (dx, dy}, for integer values of dx and dy. The assumption that one line
endpoint is at the origin loses no generality because lines with other origins are
simply translations of the line with origin (0, 0). Additionally, lines are restricted
to the first octant: 0 _ dy <_ dx. Again, th i s assumption loses no generality
because an arbitrary line can be generated by t~ansposing the canonical line or
by reflecting it about one of the principal axes.

The objective of a line-drawing algorithm is to enumerate those pixels that lie
close to the true line, the mathematical line from (0, 0) to (dx, dy). Figure 1
illustrates a typical line, showing with circles the pixels that correspond either to
spots illuminated by a CRT beam on a raster display or to the swath of a plotter
pen. Notice that integral values of coordinates locate pixel centers.

While a line may be displayed using many different pixel configurations, one
configuration is usually preferred. The preference arises because some configu-
rations approximate the true line more closely than others, some appear to have
more uniform pixel density, or brightness, than others, and so on. Many of the
algorithms presented in this paper generate the optimal line, defined as follows:

1. The oPtimal line illuminates exactly one pixel in each vertical column. This
assumption depends on the fact that the line's extent in x exceeds its extent
in y. The purpose of this choice is to limit variations in pixel spacing.

2. Within each column, the pixel illuminated is the one closest to the true line.

To display the optimal line, the line-drawing algorithm must compute, for each
integer xi, the coordinate yi of the pixel that should be illuminated. The coordinate
yt of the true line is simply yt = (dy/dx)x~. Illuminating a pixel centered at yi

ACM Transact ions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms • 261

y=5 j

y=O
x=0 x=8

Fig. 1. T h e line from (0, 0) to (8, 5). Small dots represent pixel centers. The solid line represents
the t rue line. Circles show the pixels t ha t are i l luminated to display the opt imal line.

Fig. 2.

f dy
dx

I l lustrat ion of the relat ionship be tween the vert ical distance e,, and the perpendicular
dis tance ep.

introduces an error ev = y i - y t ffi y i - (d y / d x) x i , measured along the y-axis. The
error ep measured perpendicular to the line can be determined using similar
triangles (Figure 2): ep ffi (d x / (d x 2 + d y 2) i) e v . Thus, for any given line, ep is simply
a constant times ev. Consequently, determining yi by minimizing the error e~ will
identify the pixel tha t is closest to the line, using either vertical or perpendicular
distance measures.

The errors can be minimized if yi is computed by rounding y t : y i -~ round(yt),
or equivalently, yi = t runc(yt + 1/2) = [y t + 1/2J. (Recall tha t the floor function,
Ix J, denotes the greatest integer less than or equal to x.) With this choice, e~ =
[y t + 1/2J - y t , so - 1 / 2 < e~ _ 1/2.

3. DERIVATION OF THE BRESENHAM ALGORITHM
The minimum error formulation of the optimal line leads directly to a simple
algorithm tha t enumerates all the points on the optimal line, and which can be
expressed in a PASCAL-like language:

A1

var yt : e xac t r ea l ; dx, dy, xi, yi: integer;
for xi := 0 to dx do begin

yt :ffi [dy/dx]*xi;
yi := trunc(yt + [1/2]);
display(xi,yi)

end

Although this procedure is expressed using programming language constructs, it
requires tha t precise real arithmetic be used; floating-point approximations are

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

262 Robert F. Sproull

not permitted. To emphasize this precise ari thmetic, variables tha t use it are
declared to have type exactreal. Square brackets enclose expressions whose
values do not change during i terat ion of the loop; these expressions can be
computed only once, before the loop is entered, and saved in t emporary variables.
We shall also maintain tha t multiplications by a power of two do not require
multiplication operations, but can be achieved by addit ion or ar i thmetic shifting.

Strength reduction. The next version of the algori thm is derived from A1 by
observing tha t yt can be calculated incremental ly by adding the quant i ty (dy /dx)
on each iteration. Converting multiplications into repeated additions is one of a
number of incremental techniques used f requent ly in computer graphics algo-
rithms. These techniques make incremental changes to the state of an algori thm
or data s t ructure ra ther than recomputing a result f rom scratch.

A2

va t yt: exactreal; dx, dy, xi, yi: integer;
yt := 0;
for xi := 0 to dx do begin

yi :-- trunc(yt +[1/2]); * assert yt = (dy/dx)xi *
display(xi,yi);
yl~-- yt + [dy/dx]

end

Subst i tut ion o f variable. A simple t ransformat ion subst i tutes

ys = yt + 1/2. (1)

A3

var ys: exactreal; dx, dy, xi, yi: integer;
ys := 1/2;
for xi := 0 to dx do begin

yi := tmnc(ys); * assert y s = (dy/dx)xi + 1/2 = yt + 1/2 *
display(xi,yi);
ys := ys + [dy/dx]

end

Representa t ion change. Algorithm A3 is fur ther t ransformed by breaking ys
into integer and fractional parts: y~i, which will take on only integer values, and
y~f, which will hold only fractional values. Thus

y~ = y~i + ysf (2)

0 <_y~r< 1. (3)

This substi tution requires tha t the incremental step (y~ := y~ + [dy/dx]) be
changed to add the increment to the fractional par t (ysr) and then test whether
the result exceeds 1 (i.e., to see if it is no longer fractional).

A4

va t ysf: exactreal; dx, dy, xi, ysi: integer;
ysi := 0; ysf := 1/2;

ACM Transact ions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms 263

for xi :=0 to dx do beg in
• assert ysi + ysf = yt + 1/2 *
display(xi,ysi);
if ysf + [dy/dx] _> I t h e n beg in

ysi := ysi + 1;
ysf := ysf + [dy/dx -1]

end e l se begin
ysf :-- ysf + [dy/dx]

end
end

S u b s t i t u t i o n o f var iable . Algor i thm A4 can be t r a n s f o r m e d into the B r e s e n h a m
a lgor i thm by replacing the use o f y s f with t h a t of a var iable r :

r = 2 dy + 2 (y s f - 1) dx. (4)

T h e object ives of this t r ans fo rma t ion are to change the c o m p a r i s o n in the inner
loop to a sign check (i.e., a compar i son wi th 0), and to e l iminate division
opera t ions by scaling by 2 dx. Making the appropr i a t e subs t i tu t ion of r into A4
yields the B r e s e n h a m algor i thm:

A5

var dx, dy, xi, ysi, r: integer;
ysi := 0; r := 2*dy - dx;
for xi := 0 to dx do beg in

• assert yt + 1/2 = ysi + ysf = ysi + :(r + 2dx - 2dy)/2dx *
display(xi,ysi);
if r _> 0 then beg in

ysi := ysi + 1;
r := r - [2*dx - 2*dy]

end else beg in
r := r + [2*dy]

end
end

T h e B r e s e n h a m a lgor i thm is ideal for i m p l e m e n t a t i o n in h a r d w a r e or mic ropro-
cessors wi th l imited a r i thmet ic power. T h e a lgo r i thm requi res ne i the r division
nor mult ipl icat ion, and requires no f loa t ing-poin t app rox ima t ions because all
variables take on only integer values. Moreover , r is no t requ i red to ho ld large
values. Equa t ions (3) and (4) imply

2 dy - 2 d x <_ r < 2 dy. (5)

I f 0 _< dy <_ d x <_ 2n - - 1, r is b o u n d e d by

- - 2 n+l 4- 2 ~ r < 2 n+ l - 2. (6)

T h u s if d x and dy are n-bi t posi t ive integers, r requi res a t m o s t n + 2 bi ts in a
two 's c o m p l e m e n t representa t ion .

I n t e r p r e t a t i o n o f r. T h e value of r is re la ted to the ver t ical e r ror ev, t he d is tance
f rom the pixel cen te r to the t rue line. T h e er rors will be ident ical for all a lgor i thms
given above, because the same sequence of poin ts is genera ted . W h e n d i s p l a y is
called, ev = y~i - yt . Using eq. (1) to subs t i tu te for yt , and t h e n eq. (2) to subs t i tu te

ACM Transact ions on Graphics, Vol. 1, No. 4, October 1982.

264 Robert F. Sproull

for y~, we have (1) (1),
ev = y , i - y , - = y~i - Y~i + Y ~ r - ffi ~ - Y~f.

Applying t ransformation of eq. (4) yields

- r 1 ely
ev = - - +

2 d x 2 d x "

The value r is thus linearly related to ev, bu t is offset by 1/2 due to the loop's
initial conditions, offset by (d y / d x) because r has already been computed for the
next point along the line when d i s p l a y is called, and scaled by 2 d x to require
only integral values of r.

S u m m a r y . All of the algorithms developed in this section compute the same
sequence of points (xi , yi) tha t approximate the t rue line. Mathemat ica l and
program transformations are used to derive efficient implementat ions. Th e algo-
r i thms are usually adapted to draw lines in any oc tant by making separate ly
customized versions for each octant.

4. AN n-STEP ALGORITHM

Before exploring multipoint algorithms, we illustrate the t ransformat ion tech-
niques developed in the previous section by deriving an algori thm tha t takes
horizontal steps of n units in x. Such an algori thm will generate every n t h point
on the line. We start with an obvious variant of AI:

N1

va t yt: exactreal; dx, dy, xi, yi, n: integer;
for xi := 0 to dx by n do begin -.

yt := [dy/dx]*xi;
yi := trunc(yt + 1/2);
display(xi,yi)

end

Computing yt incrementally, and substi tuting ys = yt + 1/2, we have a var iant
of A3:

N3

var ys: exactreal; dx, dy, xi, yi, n: integer;
ys := 1/2;
for xi := 0 to dx by n do begin

yi := trunc(ys);
display(xi,yi);
ys := ys + [n*(dy/dx)]

end

When ys is broken into integer par t y,i and fractional par t y, f , n (d y / d x) m ay also
have an integer and fractional part. Define the integer par t s so tha t 0 __< n (d y /

dx) - s <_ 1; the fractional par t is then n (d y / d x) - s, which a l though called
fractional, may actually equal 1. A value of s tha t meets these constraints is s ----

ACM Transact ions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms 265

[n (dy /dx)J . T h e a lgo r i t hm becomes:

N4

v a t ysf: exactreal; dx, dy, xi, ysi, n, s: integer;
• assume s has been computed *
ysi := 0; ysf := 1/2;
for xi := 0 to dx b y n do b e g i n

display(xi,ysi);
i f ysf + [n* (dy/dx) - s] -> 1 t h e n b e g i n

ysi := ysi,+[s + 1];
ysf := ysf + [n*(dy/dx) - s - 1]

end else b e g i n
ysi := ysi + s;
ysf :-- ysf + [n*(dy/dx) - s]

end
end

T h e next s tep is to apply a t r a n s f o r m a t i o n t h a t m a k e s a B r e s e n h a m - l i k e algo-

r i thm: r = 2n dy + 2 (y 8 f - 1 - s) dx.

N5

v a t ysf: exactreal; dx, dy, xi, ysi, n, s, t: integer;
• assume s and t = 2n dy - 2s dx have been computed *

r :-- t - dx; * ysf = 1/2 implies r = 2ndy + 2(1/2 - 1 - s)dx *
ysi :-- 0;
for xi := 0 to dx by n do b e g i n "N51oop"

display(xi,ysi);
i f r _ 0 t h e n b e g i n

ysi := ysi + [s + 1];
r := r - [2*dx - t]

end else b e g i n
ysi := ysi ÷s;
r : = r + t

end
end "N51oop"

Note t h a t th is a lgo r i t hm is iden t i ca l to A5 if n -- 1, s = 0. T h e a t t e n t i v e r eade r
will ques t i on w h a t h a p p e n s if dy = dx, n = 1. No te t h a t s is no t d e f i n e d to be
[n (d y / d x) J . So by se t t ing s = 0 in th is case, t he a s s u m p t i o n 0 ----- n (d y / d x) - s <_
1 is no t violated. T h e o the r poss ib i l i ty for d y = dx , n a m e l y s = 1, gene ra t e s the
same points , a l t hough the a lgo r i t hm is t h e n no t iden t ica l to A5. I t is i m p o r t a n t to
r e m e m b e r t h a t the n - s t ep a lgo r i t hm gene ra t e s the s ame op t i ma l po in t s as the

B r e s e n h a m a lgor i thm.
A m i n o r diff icul ty wi th N5 is the n e e d to c o m p u t e s = [n (d y / d x) J a n d t = 2n

dy - 2s dx. A l t h o u g h th i s could be done wi th m u l t i p l y a n d divide opera t ions , a
smal l i n c r e m e n t a l a lgo r i t hm can be used to c o m p u t e s by i n t e r l eav ing the
mu l t i p l i ca t i on and division, deve loped us ing the s ame pr inc ip les s h o w n in A1

t h r o u g h Ab:

v a t sf: exactreal; s, i, n: integer;
s := 0; sf := 0;
for i :-- 0 to n - 1 do b e g i n

* assert i*(dy/dx)= s + sf *

ACM Transact ions on Graphics, Vol. 1, No. 4, October 1982.

266 Robert F. Sproull

i f sf + [dy/dx] _> 1 then begin
s : = s + 1;
sf := sf + [dy/dx - 1]

end else sf := sf + [dy/dx]
end

This p rogram is t rans formed by subst i tut ing sp = (s f - 1) dx + dy and including
obvious calculations for t in the following prologue for insert ion in a lgor i thm N5:

N5p

v a r dx, dy, s, t, sp, i, n: integer;
begin "N5prologue"
s := 0 ; t : = 0;
sp := dy - dx;
for i := 0 to n - 1 do begin

• assert i(dy/dx) = s + (sp + dx - dy)/dx *
t := t + [dy + dy]; * to form 2ndy term *
i f sp _> 0 t h e n begin

s : = s + l ;
t := t -- [dx + dx]; * to form -2sdx term *
sp:= sp - [dx - dy]

end e l se sp := sp + dy
end
end "N5prologue"

This prologue has the effect of one division and three multiplications, all of which
are inter leaved in a single loop. For fur ther efficiency, the loop m a y be unwound;
for small n, it m a y be unwound entirely.

5. MULTIPOINT ALGORITHMS

This section develops l ine-drawing a lgor i thms tha t are capable of high speed by
generat ing several points on a line a t once. These a lgor i thms are useful if a f rame
buffer display can write several pixels in one operat ion, or if lines mus t be
approx imated with special charac ters [10]. T h e t ransformat ions i l lustrated in the
preceding sections are used extensively in deriving these algori thms. T h e y allow
the algori thm to be s ta ted in conceptual ly s imple t e rms and then t r ans fo rmed
into one tha t can be efficiently implemen ted with integer ar i thmet ic . T o save
space, the derivat ions in this section skip m a n y of the s teps i l lustrated in previous
sections, bu t the techniques are the same.

A related class of a lgor i thms generates mult iple points on a line in order to
form a compac t encoding of the point sequences, using techniques akin to run
coding [5, 6, 8, 12, 13]. T h e lengths of mul t ipoin t sequences selected by these
a lgori thms are de te rmined by the length of repeat ing pa t t e rns in the point
sequences. T h e object ive of mul t ipoin t a lgori thms given in this section is r a the r
different, namely to generate points on the line in fixed length sequences; the
length is de te rmined by the n u m b e r of pixels t ha t can be wri t ten into the f rame
buffer at once. While variable length sequences obta ined f rom a run-coding
a lgor i thm could be broken down into fixed length sequences tha t m a t c h the
configuration of the f rame buffer memory , more efficient a lgor i thms are obta ined
by designing the a lgori thms f rom the outset to genera te fixed length sequences.

ACM Transact ions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms 267

5.1 The (n, n) Algorithm

T h e n-s tep a lgor i thm deve loped in Sec t ion 4 is the basis for a paral le l a lgor i thm:
opera te n copies of the p rocedure , each genera t ing poin ts spaced n uni ts apar t ;
hence the n a m e (n, n). E a c h copy of the a lgor i thm is phased sl ightly differently:
the copy wi th phase ffi 0 genera tes poin ts at x ffi 0, n, 2n ; t he copy withphase
= 1 genera tes poin ts a t x = 1, n + 1, 2n + 1 ; and so on. Th i s t e chn ique (cf.
A1) is s imply expressed as:

P1

v a r phase: integer;
for phase := 0 to n - 1 do p a r b e g i n

v a r xi, yi: integer; yt: exactreal; * These variables are duplicated for each phase. *
for xi := 0 + phase to dx b y n do beg in

yt := [dy/dx]*xi;
yi :-- t runc(yt + [1/2]);
display(xi, yi)

e n d
p a r e n d

T h e bracke t ing p a r b e g i n and p a r e n d m e a n t h a t the re are n paral le l copies of
the inner loop, each opera t ing wi th a different value of phase and wi th sepa ra te
copies of the local var iables xi, yi, and yt. We now p roceed wi th t r ans fo rma t ions
d e m o n s t r a t e d in Sec t ions 3 and 4, ob ta in ing first P3, a va r i an t of N3:

P3

var phase: integer
for phase := 0 to n - 1 do p a r b e g i n

v a r xi, yi: integer; ys: exactreal; * These variables are duplicated for each
phase.*

P5

v a r dx, dy, s, t, n, sp, i, phase: integer;
beg in "N5prologue" • Prologue is identical to N5p, above. *
s : f 0 ; t : = 0 ;
sp := d y - dx;
for i :ffi 0 to n - 1 do beg in

• assert i(dy/dx) ffi s + (sp + dx - dy)/dx *
t :-- t + [dy + dy];

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

ys :-- [dy/dx]*phase + 1/2;
for xi :-- 0 + phase to dx b y n do begin

yi := trunc(yt);
display(xi, yi);
yt :-- yt + [n*(dy/dx)]

e n d
p a r e n d

T h e inner loop is now t r a ns fo rm e d into one a lmos t ident ical to the inner loop of
N5; on ly the i te ra t ion of xi is different. T h e initial c o m p u t a t i o n for ys requi res a
mul t ip ly /d iv ide , wh ich is t r a n s fo rm e d into a loop execu ted phase t imes to
c o m p u t e initial values for ysi and r. Th i s loop is c o m b i n e d wi th the p ro logue
(N5p) to c o m p u t e values for s and t. T h e final resul t is P5:

268 • Robert F Sproull

if sp --> 0 then begin
s : = s + l ;
t := t - [dx + dx];
sp := sp - [dx - dy]

end else sp := sp + dy
end
end "N5prologue"

for phase := 0 to n - 1 do parbegin
var xi, ysi, r, i: integer; * These variables are duplicated for each phase. •
begin "P5init" * Computes initial values for r and ysi *

r : = t - dx;
ysi := 0;
for i := 0 to phase - 1 do

ff r _ [t - 2* dy] then begin
ysi := ysi + 1;
r := r - [2* d x - 2* dy]

end else r := r + [2* dy]
end "P5init"

for xi := 0 + phase to dx by n do begin "PSloop"
• Identical to N51oop, above. •
display(xi, ysi);
if r >_ 0 then begin

ysi := ysi + [s +1];
r :ffi r - [2* d x - t]

end else begin
ysi :ffi ysi + s:
r : - - r + t

end
end "P51oop"

parend

For greater efficiency, both the N5prologue and P5init loops may be profitably
unwound. The P5init block computes initial values for r and ysi for each phase;
for more efficiency, the P5init loop can be executed n times outside the phase
loop and can pass to the P51oop values for r and ysi corresponding to each phase.
Notice tha t the P5init loop bears a strong resemblance to the one-step Bresenham
algorithm, A5; the difference arises because of the slightly different expressions
for r.

5 2 The (1, n) Algori thm

The second algorithm capable of exploiting parallelism uses the n-step algorithm
to find points on the line at n-unit intervals and fills points in between with a
stroke. The n pixels in each stroke can be writ ten in parallel. This technique is
useful when lines must be approximated with characters because a raster display
or printer is controlled by a character generator; the characters are simply short
strokes.

The algorithm is easily derived from N5. In the inner loop, the test on r
determines whether the line rises by s + 1 or s units for a move of n units in x. If
the line rises by s + 1 units, a stroke tha t rises s + 1 units in n is drawn from the
current (x, y) point. The stroke is determined by an index i tha t gives its rise in
y, i = 0, 1 n. The strokes may be precomputed using the Bresenham
algorithm, as shown in Figure 3 for n ffi 8. Note tha t each stroke has only n points
(x = 0, 1 n - 1), but tha t the rise associated with a stroke is tha t of the

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms 269

. ×

. ~) ×

:oo ;ooo: :

Fig. 3. T h e nine different s t rokes for n = 8. T h e left co lumn shows rises of 0 (bottom), 1, 2, 3, and 4
(top). T h e r ight co lumn shows rises of 5 (bottom), 6, 7, and 8 (top). T h e origin of a s t roke is ma rked

wi th a + and the origin of the next s t roke with a x .

(n + 1)th point (x = n). This convention is adopted because algorithm N5
computes the rise to the origin of the next stroke ra ther than the rise to the end
of the current stroke.

In order to draw lines of arbitrary length, the last stroke on the line may be
only a partial stroke. The standard stroke is simply truncated: only the first few
points on it are actually displayed. This is illustrated by the procedure
DisplayStroke, which accesses an array Stroke[i, x] to find the y coordinate of a
pixel given the stroke rise i and the x coordinate relative to the beginning of the
stroke.

p r o c e d u r e DisplayStroke(originX, originY, rise, maxX: integer);
va t x: integer;

for x := 0 to maxX do parbegin
display(originX + x, originY + Stroke[rise, x])

p a r e n d ;

Note that the individual pixels of the stroke are written in parallel. In the 8 × 8
display [14], the DisplayStroke function requires only two memory cycles (n =
8), one to read the stroke pat tern and one to write it, possibly truncated, at an
arbitrary position in the frame buffer.

This procedure can be incorporated into N5 to yield the complete line-drawing
algorithm Q (the algorithm is shown without the prologue N5p):

Q
v a r dx, dy, xi, ysi, s, t, r: integer;
* Insert N5p here to compute s and t *
r : - - t - dx;

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

270 Robert F. Sproull

Fig. 4.

. ° ° °

. X

F o u r of t h e e i g h t d i f f e r en t s t r o k e s w i t h n = 8 a n d a r i se of 1.

ysi :---- O;
for xi := 0 to dx by n do begin

i f r ~ 0 t h e n begin
DisplayStroke(xi, ysi, s + 1, min(n - 1, dx - xi))
ysi := ysi + [s + 1];
r := r - [2* d x - t]

e n d else begin
DisplayStroke(xi, ysi, s, min(n - 1, dx - xi))
ysi := ysi + s;
r : = r + t

e n d
e n d

While algori thm Q is substantially simpler than algori thm P5, it does not
generate optimal lines. Although the stroke origins lie within 1/2 unit of the t rue
line, the other points along the stroke may err by as much as 1 unit. This p roper ty
arises because the y coordinate of a pixel is the sum of two independent compu-
tations, the position of the stroke origin and the position of the pixel within the
stroke, each of which may make an error of 1/2. An example of a vertical error of
0.913 occurs at x = 18 in the line with d x = 23, d y = 18. Another way to see the
nonoptimali ty of Q is to observe tha t a l though only a single stroke is displayed
for each distinct rise in y, there are actually several different strokes with the
same rise (Figure 4).

While it might be tempting to devise an algori thm tha t chooses the op t imum
stroke based on the value of r, this proves difficult in practice. T h e op t imum
stroke depends on the distance from the stroke origin to the t rue line, a distance
related to the value of r. But the scaling of r tha t makes it convenient for the
line-drawing calculation makes it inconvenient to index a table of strokes; r would
have to be divided by the scale factor, a computa t ion whose expense is not in
keeping with our performance expectations. T h e topic is discussed in more detail
by Gupta [9]

Even though algorithm Q produces nonopt imal lines, the endpoint of the line
is always exact. The appendix contains a proof of this fact.

Before leaving the subject of stroke selection, we should ment ion tha t it is
essential to have algori thm Q choose one of two strokes, r a the r than merely
position the origin of a single stroke with a rise of s. If a single stroke is placed

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms 271

6

O
Fig. 5. Lines illustrating gaps and nomnonotonicities that occur when only one kind of stroke is used
to draw a line (n =8). The top line (d x = 23, d y = 18) is drawn with 3 strokes with a rise of 6, which
leave a gap. The small dots show the optimal line. The bot tom line (d x = 23, d y = 5) shows a

nonmonotonicity when 3 strokes with a rise of 2 are used.

repeatedly to display an entire line, the maximum deviation from the optimal
line may be greater than 1 or the line may have gaps or nonmonotonicities, as
illustrated in Figure 5.

6. CONCLUSION

The early sections of this paper show how simple mathematical and program
transformations can be used to transform an obvious line-drawing method based
on analytic geometry into an efficient and exact algorithm that requires only
integer arithmetic. These methods help persuade us that the algorithm is correct
without recourse to geometric constructions used by Bresenham [4]. The tech-
niques are examples of routine program transformations that should be a com-
monplace activity in program design and implementation.

The main reason for applying these techniques is to extend line-drawing
algorithms to write several points on a line at once. Although only two multipoint
schemes are explored in Section 5, one can imagine many more. The difficulty of
developing such algorithms is substantially reduced by using program transfor-
mations.

APPENDIX

We demonstrate that the (1, n) algorithm terminates at the proper endpoint
(dx ,dy) . Assume d x >_ d y >_ O, let z = a x + by be the measure of distance from the

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

272 • R o b e r t F. Sproull

line, and fur ther let a = 2 dy, b = - 2 dx. Define yi to be the y coordinate of the
pixel displayed a t x = i; zi is the distance f rom this pixel to the t rue line.

T h e Bresenham algori thm tha t generates the origin for a s t roke will guarantee
tha t I z , i l <- - b / 2 . The points x = ni + j f o r j = 1 to n are m e m b e r s of one of the
two strokes tha t represent a line of slope s /n , where s is the vert ical distance
f rom the origin of the s t roke to the origin of the next s t roke (i.e., s = yni+n - - y n i) .

I f these pixels are genera ted by a B r e s e n h a m algor i thm aiming a t a line of slope
s /n , then we will have Iz , i+j - (j /n) (zn i+, - Zni)] ~ - b / 2 , for 0 _ j _< n - 1. We
consider two cases: first, t ha t the expression is positive, and second, t ha t it is
negative.

1. We have Zni+y <-- (j / n) (Z n i + n - - Z n i) - - b/2. From the tr iangle inequality, we
also have] z , i+, - Znil <-- - b . However , the equal i ty case never occur s - - i f it did,
the slope of the line would be an integer mult iple of 1 / n and the z~i would be zero
for all i. So we now have I Zni+~ -- Z,i] < - b . For 1 <_ j <_ n /2 , this yields Zni+y <
~ b .

2. The negative case, by similar a rgument , gives Zni+i > b for 1 <_j <_ n /2 .

Both cases together I z,i+jl < - b for 1 <_ j <_ n /2 . By a similar a rgumen t
approaching f rom the o ther side (i.e., x = n i + n, n i + n - 1), we obta in
Iz,i-j] < - b for 1 <_ j <_ n /2 . Both forward and backward approaches toge ther
give [Zni+jI < - b f o r 1 <_j<_n.

When x = dx, at the endpoint of the line, we mus t have]Zdx [< - b , which,
together with the fact tha t z mus t be a mult iple of b, forces Zdx = 0. Therefore ,
the last point lies exactly on the line.

ACKNOWLEDGMENTS

This paper grew f rom a t t em p t s to write fast l ine-drawing microcode for the
"8 × 8 display," designed by Ivan Suther land and the author. Sat ish Gup ta
devoted considerable coding effort to this display and to s imulat ions of the (1, n)
method. The proof in the appendix is due to Mike Spreitzer. M a r y Shaw and
referees offered several helpful com m en t s on the manuscr ip t .

REFERENCES
1. AHO, A.V. AND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading, Mass.,

1977.
2. AHO, A.V. AND ULLMAN, J.D. The Theory of Parsing, Translation, and Compiling. Vol. 2,

Compiling. Prentice-Hall, Englewood Cliffs, N.J., 1973.
3. BENTLEY, J.L. Writing Efficient Programs. Prentice-Hall, Englewood Cliffs, N.J. 1982.
4. BRESENHAM, J.E. Algorithm for computer control of a digital plotter. IBM Syst. J. 4, 1 (Jan.

1965), 25-30.
5. BRESENHAM, J.E. Incremental line compaction. Comput. J. 25, 1 (Feb. 1982), 116-120.
6. CEDERBERG, R.L.T. A new method for vector generation. Comput. Gr. Image Proc. 9, 2 (Feb.

1979), 183-195.
7. DARLINGTON, J. AND BURSTALL, R.M. A system which automatically improves programs. Acta

Inf. 6, 1 (1976), 41-60.
8. EARNSHAW, R.A. Line tracking for incremental plotters. Comput. J. 23, 1 (Feb. 1980), 46-52.
9. GUPTA, S. Architectures and algorithms for parallel updates of raster-scan displays. Tech. Rep.

CMU-CS-82-111, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh, Pa., Dec. 1981.

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

Using Program Transformations to Derive Line-Drawing Algorithms 273

10. JORDAN, B.W., JR., AND BARRETT, R.C. A cell organized raster display for line drawings.
Commun. ACM 17, 2 (Feb. 1974), 70-77.

11. KNUTH, D.E. Structured programming with go to statements. Comput. Surv. 6, 4 (Dec. 1974),
261-301.

12. PITTEWAY, M.L.V. AND GREEN, A.J.R. Bresenham's algorithm with run line coding shortcut.
Comput J. 25, 1 (Feb. 1982), 114-115.

13. REGGIORI, G.B. Digital Computer Transformations for Irregular Line Drawings," Dept. of
Electrical Engineering, New York Univ., Bronx, N.Y., April 1972, pp. 46-61. Available as U.S.
Dept. of Commerce AD-745-015.

14. SPROULL, R.F., SUTHERLAND, I.E., THOMPSON, A., GUPTA, S., AND MINTER, C. The 8 × 8
display. Tech. Rep. CMU-CS-82-105, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh,
Pa., Dec. 1981.

Received April 1981; revised April 1982; accepted September 1982

ACM Transactions on Graphics, Vol. 1, No. 4, October 1982.

