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1. Introduction 

This paper describes an algorithm for circular arc 
mesh point selection using incremental display devices 
such as a cathode ray tube or digital plotter. Error  cri- 
teria are explicitly specified and both squared and radial 
error minimization considered. The repetitive incre- 
mental stepping loop for point selection requires only 
simple addition/subtraction and sign testing; neither 
quadratic nor trigonometric evaluations are required. 
When a circle's center point and radius are integers, only 
integer calculations are required. 

The circle algorithm complements an earlier line 
algorithm described in [1, 2]. The algorithm's minimum 
error point selection is appropriate for use in numerical 
control, drafting, or photo mask preparation applica- 
tions where closeness of fit is a necessity. Its simplicity 
and use only of elementary addition/subtraction allow 
its use in small computers, programmable terminals, 
or direct hardware implementations where compactness 
and speed are desirable. 

The display devices under consideration are capable 
of executing, in response to an appropriate pulse, any 
one of the eight linear movements shown in Figure 1. 
Thus incremental movemer/t is from a point on a mesh 
to any of its eight adjacent points on the mesh. 

All generated data points must lie on mesh points 
and must consequently have integer display coordinates. 
It is assumed that by scaling and appropriate translation 
of axes, the circle is centered at the origin of a rectangu- 
lar coordinate system whose units are those of the 
display device. 

At each move, the algorithm choses a point so as to 
minimize the absolute difference between R 2 and the 
square of the radius to the point. In the Appendix it is 
shown that this also minimizes the linear difference 
between R and the radius itself when the circle is cen- 
tered at a display mesh point and has an integer radius. 

In this paper, the algorithm is developed for the ease 
of clockwise movement from (0, R) to (R, 0) through 
the first quadrant. Requisite modifications for complet- 
ing the full circular path are then indicated and the basic 
algorithm stated for tridirectional movement control by 
quadrant. 

For  analysis, the first quadrant arc of the circle given 
by 

X 2 + y2 = R 2, where X &- abscissa >_ 0, 
y a= ordinate _> 0, 
R a= an integer _> 1 

will be used. The extension to complete the full circle 
will then be described as will the modifications required 
to accomodate an arbitrary arc of the general circle 
given by 

( x - -  a) 2 +  ( y - -  b) 2 = r 2 

with starting point (x~, y,) and terminating point 
(x t ,  yt) specified on circumference. 
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2. Analysis 

In the first quadrant of a circle, y is a monotonically 
decreasing function of x. Clockwise movement in this 
quadrant can therefore be accomplished by a sequence 
of moves involving only m~, m2, and m3. 

When the display is at the point P~, whose coordi- 
nates are (X~, Y~), the next movement is either ml to 
(X~ + 1, Y) at 0 °, m2 to (X~ + 1, Y~ -- 1) at 315 °, or 
m3 to (X~, Y~ -- 1) at 270 °. The absolute difference 
between R 2 and the squares of the constrained radii of 
the three alternatives is minimized by determining the 
minimum of the following quantities: 

I [ ( X , +  1) 2 +  y2]  _ R 21, 
for mi movement to (X~ + I, Y~), 

[ [ ( X , +  1) 2 +  ( Y , - -  1) 2 ] -- R 21, 
for m2 movement to (X~ + 1, Y~ -- 1), 

l IX, 2 +  ( Y , -  1) 2 ] - R 2[, 
for ma movement to (Xi,  Yi - 1). 

The algorithm simplifies this threefold evaluation to 
consideration of only two points at each step by first 
observing the sign of the difference/xi : 

A, = {[(X, + 1 )2+  ( r , -  I) 2] -- R2}, 

the difference between R 2 and the square of the radius 
to the diagonally adjacent point (Xi + l, Yi -- 1). 

Figure 2 illustrates the five possibilities for the cir- 
cle's intersection with the coordinate lines X~ + 1 and 
Y~ - 1 which must be considered when selecting the 
step for movement from point P(X~, Yi). For clarity, 
subscripts for X~ and Y~ are dropped in developing the 
alternatives. 

(a) If A~ < 0, then (X + l, Y -- l) is in the interior 
of the true circle, i.e. 1 or 2 in Figure 2. The true circle 
passes between the points (X + l, Y) and (X + l, 
Y -- 1), case l, or between the points (X + 1, Y + 1) and 
(X + I, Y), case 2. 

In case 1 the closer of the two points can be found 
by observing the sign of the difference 6: 

/~ = [ [(X + 1) 2 + y2] _ R2I 
- - [ [ ( X +  1) 2 + ( Y -  1) 2] -- R 21. 

Since in case 1 the constrained radius to (X + 1, II) 
exceeds or equals R while the constrained radius to 
( X +  1, Y -  1) is less than R, 

{ [ ( X +  1) 2 +  y 2 ] _  R 2} _> 0 and 
{ [ ( X +  1) 2 +  ( r - -  1) 2 ] -- R 2} < 0. 

Rewriting the definition of 6 removing the absolute 
value expressions thus gives 

= { [ ( X +  l) 2 +  ] 1 2 ] _ R  2} 

+ {[(X + 1) 2 + (Y -- 1)21 - R2}. 

Adding and subtracting 2Y - 1 and collecting terms of 
(X + l) 2 and (Y -- l) 2 gives 

6 = 2 { [ ( X +  1) 2 +  ( Y - -  l) 2 ] -  R 2} + 2 Y - -  1. 

Recalling the definition of A~ and substituting it into 
the previous equation yields 

/~ = 2A~+ 2Y~-- 1, 

where 6 < 0 implies move ml and 6 > 0 implies movem2. 
In case 2 the movement should be ml.  That  in case 2, 
is always less than zero and hence forces the required m~ 
move can be demonstrated as follows: 

6 = 2A~+ 2 Y i - -  1, 
6 = { [ ( X +  1)2-t - y 2 ] _  R 2} 

+ { [ ( x  + l) 2 + ( r  - l) 2] - R2}. 

In case 2 the constrained radii to both (X + l, Y) and 
(X + l, Y - l) are less than R: 

{ [ ( X +  1) 2 +  y2] _ R 2} < 0 and 
{ [ ( X +  1) 2 + ( Y - -  1) 2 ] -- R 2} < 0 

so that here 

6 = --] [ ( X +  1)2+ y 2 ] _  R21 
- I [ ( X +  l) 2 +  ( Y -  l) 2 ] -  R 2[. 

Thus 6 < 0 in all occurrences of case 2, so ml is correctly 
made. 

(b) IfA~ > 0 then (X + l, Y - -  l) is exterior to the 
true circle, i.e. cases 3 and 4 in Figure 2. The true circle 
passes between the points (X + l, Y - l) and (X, 
Y - 1), case 3, or between the points (X, Y - l) and 
( X - -  1, Y - -  1), case 4. 

In like manner, an alternate difference 6': 

6' = 2A i - -  2 X i -  1 

yields a similar selection criterion; where 6' _< 0 implies 
move m2 and 6' > 0 implies move m3. 

(c) IfA~ = 0 t h e n  ( X +  1, Y - -  1) is on the true 
circle, i.e. case 5, and the movement should be m2. In 

m7 

m~ 

Fig. 1. 

j v 
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Fig. 2. 
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this case the above steps yield 8 > 0 and 6' < 0 so a 
proper m2 move is forced by either calculation. 

By noting the expansions 

( X +  1) 2 =  X ~ + 2 X +  1, ( Y - -  1) 2 =  y 2 _ 2 y +  1, 

the difference A~ and the coordinates of the display 
point P~ are observed to have the following recurrence 
relations: 

(i) For  m: movement (i.e. A~ < 0 and ~ _< 0), 

Xi+: = X i  JU 1, 
Yi+: = Y~ , 
Ai+: -- Ai + 2X~+: + 1. 

(ii) For  m2 movement (i.e. A~ < 0 and 6 > 0, or 
/x~ >_ 0 and 6' < 0), 

Xi+l = Xi + 1, 
Y~+I = Y~- -  I, 
Ai+I  = Ai  "-1- 2 X i + l  - -  2Yi+: + 2. 

(ii) For  m3 movement (i.e. A~ > 0 and 6' > 0), 

Xi+l = X i  , 
Yi+1 = Y i -  1, 
Ai+: = /x i -  2 Y I + : +  1. 

If the circle is started at one of the four intersections 
of the true circle with the coordinate axes, there is no 
need to consider any second-order terms in the initial 
conditions. If the circle starts at the point (X0 = 0, 
Y0 = R), then 

A0 = [ ( X o +  1) 2 + (Y0--  1) 2 ] -- R 2 = 2 - -  2R 

and the full first-quadrant clockwise quarter arc will be 
complete when Yi = 0 or, alternatively, when Y~ < ½. 

T o  complete the remaining three quarter arcs, the 
movement values ml ,  m2, and m3 are respecified 
appropriately; the algorithm is reinitialized and is 
repeated with the same logic as before until the com- 
plete circle is drawn. When crossing a quadrant bound- 

ary the algorithm is reinitialized with 

X0 ~-- 0, Yo+---R, A 0 + - 2  -- 2R 

or, alternatively, only current variables can be em- 
ployed by reinitializing with 

Xo~-'- -- Y i ,  Y o ~ - - X i ,  A o + - - A i  - -  4Xi .  

As is true for some plotters, let M1, M2, M3 de- 
note, respectively, the appropriate m subscript for 
actual movement codes within a quadrant correspond- 
ing to normalized mx, m2, and m3 first quadrant move- 
ment. With initial conditions of M10 = I, M20 = 2, 
M3o --- 3, one can observe that at each quadrant cross- 
ing the clockwise movement code reinitialization is 

Mlj+I +-- M3s, M23-+1 <--- Mlj+I + 1, 
M3~'+l ~ 8[ (M1;+I + 2), 

where a [ b is b modulo a. 
Alternatively, movement can be coded as a 2-tuple 

of delta abscissa and ordinate (Ax, Ay) increments 1, 
0, or --1. With initial conditions of M10 = (1, 0), 
M20 = (1, --1), and M30 = (0, --1), one can observe 
that at each quadrant crossing the clockwise movement 
code reinitialization is 

Mlj+x ~ M3j,  M2i+l ~-- (M212b, --M2[1]j), 
M3~.+1 *-- (M312]s, - M 3 [ l b ) .  

To adapt the above basic algorithm ~ for arbitrary 
circular arcs having noninteger radii and center points, 
initialization must be considered in more detail. The 
general circle will be (x -- a) 2 + (y -- b) 2 = r 2 with a 
starting point (x , ,  ys) and terminating point (x~, yt) 
given on the circumference. Direction of rotation will 
be clockwise (D = 1) or counterclockwise (D = -- 1). 

As the path to be calculated must consist of integer 
mesh points, it is necessary to determine the mesh 
points closest to the starting and terminating points. 
Any point (x, y) on the circumference lies within a unit 
square having mesh point corners of 

c :  {(txj, lyJ) (txJ, [yl) ([xl, tyJ) ([xl,ryl)} 

where [xJ is the greatest integer equal to or less than x 
and [x] is the least integer equal to or greater than x. 
If x and/or  y are integers, the unit square degenerates 
to a single point or a unit length line and the four 
member set C will contain only one or two unique 
elements. The closest mesh point (X', Y') is that point 
from C which minimizes the difference: 

[(x' - a) 2 4- (y' - b) 2 -- r=l (x', y') 3 C. 

Translating the closest mesh points to an origin coinci- 
dent with the center of the circle then gives closest 
starting and terminating points of 

i,~ = X , ' - - a ,  1~ = Y ; - - b ,  
~ t  = X /  - -  a ,  17t = Y /  - -  b .  

A flow chart for the basic integer, full circle case [3] which 
takes advantage of the control format codes for incremental digital 
plotting with the IBM 1627 is shown in Figure 3. 
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Fig. 3. 
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3. Algorithm 

Given  the .arc ' s  s tar t ing and  t e rmina t ing  points ,  
( x , ,  y , )  and  ( x t ,  y t ) ,  on the circle c i rcumference  to-  
gether  with the  circle 's  center  po in t  (a, b) and  d i rec t ion  
o f  ro t a t ion  (D),  the  d i sp lay  mesh po in t  select ion a lgo-  
r i thm can be summar ized  as fol lows for  the  genera l  
case:  

Notation 
X~ is the "constrained circle's" translated abscissa value at the 

ith step of normalized clockwise movement in the first quad- 
rant. 

Y~ is the "constrained circle's" translated ordinate value at the 
ith step of normalized clockwise movement in the first quad- 
rant. 

O.i is the number of quadrants remaining to be traversed. 
MI represents relative 0 ° movement for normalized clockwise, 

first-quadrant incrementation. 
M2 represents relative 315 ° movement for normalized clockwise, 

first-quadrant incrementation. 
M3 represents relative 270 ° movement for normalized clockwise, 

first-quadrant incrementation. 
A~ isthesigned difference {[(Xi+l) 2 + (Yi-1) 2] - R2]}. The sign 

of ,5~ indicates whether the point (X~+I, Y~--I) is inside or 
outside of the true circle. 

a is the signed difference {[(X~+I) ~ q- y~2] _ R ~] + ,a~. The 
sign of a indicates which of the two points (X~+I, Y) 
or (X~+I, Y~--1) is closest to the true circle. 

a' is the signed difference {[X,.+(Yi-1)~J - R 2} --F Ai. The 
sign of a' indicates which of the two points (X~, Y~-I) or 
(X~+I, Y~- 1) is closest to the true circle. 

Since all ca lcula t ions  are based  upon  a s t anda rd  
first q u a d r a n t  c lockwise ease, it is necessary to t r ans fo rm 
any o ther  s i tua t ion  to  the normal ized  case. Table  I 
gives the t r ans fo rma t ion  to ob ta in  (Xs ,  Y,) and  
( X t ,  Y t )  f rom ( o ,  ~ )  and  ( ~ t ,  l~t). Tab le  I also 
gives a q u a d r a n t  indica tor ,  q, f rom which the number  
o f  q u a d r a n t  crossings between the two poin ts  can be 
de te rmined  toge ther  with the init ial  movemen t  codes  
assoc ia ted  with an a rb i t r a ry  point .  

The  n u m b e r  o f  q u a d r a n t  crossings is first ca lcu la ted  
as  fo l lows :  

Q* = 4 1 (  q, - q,) ,  

then,  to consider  Q* = 0, the poss ible  ambigu i ty  is 
resolved by:  

(a) Q = Q* - 1 i f  Q* ~ 0, or  if  Q* = 0 and  
ei ther  X ,  >_ X~ and  Yt  < Y ,  or X t  > X ,  and  Yt  <_ Y ,  ; 

Initialization 
1. Determine closest mesh points (X/, Y/) and (Xt', Y,') from 

(x,, y,) and (xt, yt) by finding their respective unit square 
corner mesh points from C, and Ct which minimize 

[ [(x'--a)~ + (.v'-b) 2] -- [ (x-a)  ~ + (y -b )  2] [ 

from C(x', y'): { ([xJ, [yJ) (lxl, [y]) (Ix], tyJ) (Ix], [y]) }. 

2. Translate to zero centered circle coordinates: 

.~, = Xo' - a, ~:, = Y /  -- b, Xt  = Xt' -- a, ~:, = Y,' -- b. 

3. Transform (~ , ,  ~ )  and (Xt, ~t) to normalized, first quadrant, 
clockwise coordinates per Table I to determine 

X, = X0, Y, = Y0, q,,  MI, = M10, M2o = M2o, 
M3o = M30, andXt ,  Yt ,  qt. 

4. Calculate the number of quadrant crossings from Q* = 
41 (q,-q,)  as 

Q0 = 3, if Q* = 0 a n d X t  <_ X, andYt>_ Y°, 
Q0 = Q* - 1, otherwise. 
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5. Calculate the initial decision difference A0 as 

A0 = [(X~+I) 2 + (Y*--l)  z] -- [ (x , - -a)  z + (Y,--b) 2] 
= { [ (X/ - -a )  a + ( Y / - - b )  2] -- [ (x , - -a)  2 + (y,--b)2]} 

+ 2(X,- -  Y , + I ) .  

6. Set the direction of  rotat ion indicator as 

D = 1, for clockwise rotat ion,  
D = --1,  for counterclockwise rotation. 

Incremental Stepping Loop 

1. If  Qi > 0, i.e. not in final quadrant,  go to step 2. Otherwise: 
a. If  Xt > X~ or Yt < Y~, go to step 2. 
b. Otherwise, terminate. 

2. If Y~ >__ ½, i.e. quadrant  not  complete, go to step 3. 
Otherwise, reinitialize to 

X o + - - - Y i ,  Y o * - - X i ,  A 0 ~ - A i - - 4 X i ,  Q J + I ~ - Q J  - 1 

Mli+l  *-- M3~, M2i+l *-- D .  (M212]j, --  M211]i), 
M3i+~ +- D .  (M312]i, --  M3[1]i) 

and return to step 1. 

3. a. If  A~ _< 0, calculate 

,-- 2nl + 2Yi --  1, 

a n d i f 8  < 0 m o v e  M1, if~ > 0 m o v e  M2. 
b. If  A~ > 0 calculate 

~' ,-- 2Ai -- 2Xi -- 1; 

and if~'  _< 0 move M2, if~' > 0 move M3. 

4. a. If  movement  was M1, then 

Xi+l ~-- Xi  + l ,  Yi+16.-- Yi , Ai+l +-- Ai + 2Xi+l + l.  

b. If  movement  was M2, then 

Xi+l ~-- Xi + 1, Yi+l *-- Y - 1, 
A~+I +- Ai + 2X~'+1 - 2Y~+1 + 2. 

c. I f  movement  was M3, then 

XI+l e-- X~ , Yi+l e-- Yi - 1 ,  Ai+l +- Ai -- 2Yi+l + 1. 

5. Return  to step 1. 

4. Remarks 

Other incremental algorithms for displaying figures 
have been described elsewhere [1-12]. Pitteway [10] 
first published a general solution for simply displaying 
conic sections incrementally by differencing the general 
polynominal and using a bi-directional movement 
control by octant. In return for only a very slight over- 

head when crossing the additional four 45 ° octant 
boundaries, his bi-directional control methodology 
offers the most efficient inner stepping loop of any 
algorithm of which the author is aware. A variant of 
his bi-directional method for vertical error minimiza- 
tion can be used with the clockwise, first quadrant 
normalization technique described here for squared 
error minimization to also achieve a three addition 
inner loop for both square and diagonal moves. F rom 
90 ° to 45 ° one uses the two variables 2(X -- Y) + 1 
and 2X + 1, then from 45 ° to 0 ° one tracks the vari- 
a b l e s 2 ( Y - -  X) -- 1 and 2 Y - -  1. The square move- 
ment code is changed at 45 ° while the diagonal move 
is changed at 0 ° (i.e. at 2(X - Y) + 1 > 0 and at 
2Y - 1 < 0). For  implementation symmetry, the de- 
cision difference, d, is d = ½~ between 90 ° and 45 ° and 
is d = --½( between 45 ° and 0 °. 

Addressing each conic section separately, Metzger 
[9] provided a set of compact algorithms for incremen- 
tal display, though, in all but the straight line case, 
quadratic or square root calculation is required. 

Jordan, Lennon, and Holm [8] have unified with 
very good clarity a generalized but efficient solution for 
incrementally displaying, with arbitrary step sizes (ax, 
ny) explicitly covered, any curve possessing continuous 
derivatives. As special cases, they describe a tri-direc- 
tional movement control polynominal display algorithm 
functionally comparable to that of Pitteway and a 
circle display algorithm functionally comparable to the 
one presented here. Though comparable, the Jordan 
and Pitteway algorithms do differ in error criteria in 
that Jordan minimizes function residue or, for circles, 
squared error while Pitteway minimizes vertical or 
horizontal error. 

A linear algorithm using only integer calculation 
has been described by Denert [7] for polygon approxi- 
mation of circles. In two short notes [11, 12] Pitteway 
has briefly discussed variants and an alternative to the 
Denert algorithm using [1, 2, 10]. 

Cohen [4, 5] has presented a method of generating 
a sequence of regularly spaced points on a circle using 
the iteration P(~+I) = TP~ where T is a 2 X 2 matrix. 
Successive points then are connected by straight line 
segments to approximate the curve. For  other conic 
sections, the method generates variable density points 

Table  I. T r a n s f o r m a t i o n  Table :  N o r m a l i z e  to S t a n d a r d  Clockwise  Firs t  Q u a d r a n t  Case.  

Q u a d r a n t  R o t a t i o n  X" 17 Index  X Y q M1 M2 M3 

I I I  CCW < 0  < 0  0 
II  CCW < 0  > 0  1 
IV CCW >_0 < 0  2 
I CCW >_0 >__0 3 
III  CW < 0  < 0  4 
II  CW < 0  > 0  5 
IV CW >_0 < 0  6 
I CW >_0 _>0 7 

17 
2 
2 
17 
2 
17 
17 
2 

2 
I7 
17 
2 
17 
2 
2 
17 

3 0 
2 --1 
0 1 
1 0 
2 --1 
3 0 
1 0 
0 1 

--1 1 
0 --1 
0 1 
1 --1 
0 --1 
1 1 
--1 --1 
0 1 

--1 1, 0 
--1 0, --1 
1 0, 1 
1 - -1 ,  0 
1 0,  1 
1 1 , 0  
--1 - -1 ,  0 
--1 0, --1 
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Fig. 4. 
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with points most closely spaced in those portions of 
the curve having the greatest curvature. 

In personal communications [March and April, 
1975], Pitteway has shown the author an alternative 
interpretation which provides additional insight into 
the difference between squared and vertical error mini- 
mization. The expressions for 8 and 8' can be refactored 
as follows: 

8 = 2 { ( X ,  + 1) 2 + ( Y ,  - -  ½)2 _ (r  2 _ ¼)}, 
8' = 2 { ( X ,  + ½)2 + ( y ,  _ 1)z _ (r  2 _ ¼)}, 

which is twice the residue of a circle of radius (fl - ¼)~ 
evaluated respectively at the points (X + 1, Y -- ½) 
and (X + ½, Y - 1). The algorithm essentially is using 
the decision rule for squared error minimization: 

If 8 _< 0, move rnl 
If 6' > 0, move m3 

Otherwise, move m2 

The Pitteway algorithm, applied to circles, effec- 
tively evaluates these "step and a half" residues 
using a radius of r rather than (r 2 -- ~)~ and applies 
the same decision rule. In implementation, the differ- 
ence between vertical and squared criteria amounts 
only to a bias of ¼ in the initial value of 8. 

When a circle's center point and radius are limited 
to only integer values, identical display points will be 
selected regardless of whether one minimizes squared, 
vertical, or radial error. Depending upon which error 
criterion is used, different display points occasionally 
will be selected in the general noninteger case. The two 
circles (x -- 4.53) 2 + (y + 3.6) 2 = (10) 2 and x 2 + y2 = 
(4.925) 2 illustrate the differences• In the first example, 

clockwise movement from (14, --2) will be to (15, --3) 
by either vertical or radial criteria but will be to (14, 
- 3 )  by the squared criteria of the Jordan or Bresen- 
ham algorithms. In the second example, clockwise 
movement from (1, 5) will be to (2, 4) by either squared 
or radial criteria but will be to (2, 5) by the vertical 
criteria of the Pitteway or Metzger algorithms. 

A p p e n d i x  

It remains to be shown that minimizing the differ- 
ence between the squares of the true and constrained 
radii also minimizes the linear difference between the 
two radii. Figure 4 shows the case in which the circle 
passes between the points (X + 1, Y) and (X + 1, 
Y - -  l). 

Using the notation in Figure 4, application of the 
trigonometric law of sines for p and q and the law of 
cosines for d 2 and e 2 gives 

d 2 = w 2 + p 2 _  2 p w c o s ½  (A + B), 

I sin (90-- A) _ 2 w c o s ½ ( A + B )  1 d2 = w2 + P Wsin[90+½(A--B)]  

d2 = w2 + pw[COS A -- 2 eos ½(A + B) cos ½(A -- B) ] 
~ b ~ ( ~ i  - -  B5 

d~ w 2 cos B 
= -- pw cos ½(A -- B) '  

cos A cos B -] 
d ~ = w ~ 1 - cS~s ~ ~ d = ~ ) J "  (1) 

e 2 = (I -- w) 2 + q 2 -  2q(1 -- w) cos½(A + B ) ,  

{ sin (90--  B) 
e 2 = ( l - - w )  2 + q  (1--W) s i n ~ O ~ ( - A ~ B ) ]  

N 

- 2(1 - w) cos ½(A + B) t ,  

e 2 = (1 -- w) 2 + q ( 1  -- w) 

• [ c ° s B - - 2 c ° s ½ ( A + B )  e°s½(A--B)]cos~_~d___B) ' 

e2 = (l _ w)2 -- q ( 1 - -  w) [ c° sA 1 
c o s  ½(A - B) ' 

e 2 (1 -- w) 211 c o s A c o s B 1  
cos 2 ~ Z_-2.j" (2) 

From (1) and (2) 

I c°s A c°s B ] d 2 + e  2 = [w 2 + ( l - w )  2] 1 - - c b - ~ ( ( A _ B )  (3) 

Now 90 ° > A > B >__ 0 °and  1 >__ w > 0. Hence 

1 >_ [w 2 + (1 - w) 2] > ½ 

and 

c o s / l  co s /~  -[ 
1 > 1 c ~ ( 2 - 7 ~ ) _ 1  > o 
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so that 

1 > d 2 "a t- e 2 > 0. (4) 

In a like manner, (4) can be derived for the 6' situa- 
tion in which the point (X d- 1, Y -- I) and the line 
segment d'  are exterior to the circle and the point 
(X, Y - 1) and the line segment e' are interior to the 
circle. 

Now 

6 = { [ ( X d -  1) 2d-  y 2 ] _  R 2} 
d- {[(Xd- 1)2d- ( Y -  1)21 -- R2}. 

Hence f rom Figure 4 

6 = [ (R--}-d)  2 -  R 2 1 +  [ ( R - -  e) 2 -  R21, 
= 2R(d -- e) d- (e 2 d- d2), 

so that 

d 2 d - e  2 = ~ - -  2 R ( d - -  e). (5) 

F rom (4) and (5) then 

1 > 6 -- 2 R ( d - -  e) > 0 

and 

4.53) 2 + (y + 3.6) 2 = (10) 2, movement  clockwise 
f rom (14, --2) or counterclockwise from (15, --4) to 
the point (14, --3) provides an example of  minimum 
squared error coinciding with a nonminimum radial 
error, or normal distance to the curve, in excess of  ½ 
unit. At (14, - - 3 ) t h e  squared error is ---~ 9.96 while 
radial error is ~---0.511. At (15, --3) the squared error 
is ~---9.98 while radial error is ~ 0.487. One also can 
observe in this case that the selected points for the full 
circle do not exhibit the quadrant  to quadrant  (or oc- 
tant  to octant) symmetry found when a circle's center 
point and radius are integers. 
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6/2R > (d - e) > (6 -- 1)/2R. (6) Received June 1974; revised September 1975 

Therefore 

i f6 < 0 t h e n ( d -  e) < 0 h e n c e d <  e, (7) 
if6 ~_ l t h e n ( d - -  e) > 0 h e n c e d >  e. (8) 

When 6 is  integer valued only, one has the simple 
decision rule 

i fS_~ 0 t h e n d <  e, (9) 
if6 > 0 t h e n  d > e. (10) 

In a like manner,  (9) and (I0) can be shown to hold 
for the 6' situation in which the point (X d- 1, Y -- 1) 
and line segment d'  are exterior to the true circle. 

The circle algorithm thus minimizes both the linear 
difference between the true and constrained radii and 
the difference between the squares of the true and con- 
strained radii when the circle has an integer radius and 
integer center point. F rom eqs. (4) and (5) and the sum 
of the square roots of eqs. (1) and (2) (i.e. 0 < d d- 
e < 1), it can be shown that if 6 < 0 then d < ½, and 
if ~ ~_ 1 then e < ½, which agrees with the maximum 
radial error found experimentally in [8] and [9]. 

When 6 can assume noninteger values in the range 
0 < 6 < I, radial and squared criteria need not coincide 
as one quickly can verify when stepping clockwise 
f rom (1, 5) on the circle x 2 d- y2 = (4.93)2. Should 
decision rule (10) be used when 0 < 6 < 1, e will be 
selected when in fact d possibly could be the lesser of  
the two radial error measures. The difference should be 
negligible for larger radii since, for 0 < 6 < 1, one can 
observe f rom equations (1), (2), (4), and (5) that 
e < 1/2 d- 1/4r and [ d -- el  < 1/2r. 

When incrementally displaying the circle (x -- 
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