Proofs to Grade

Instructions: Analyze the alleged proofs of the claims below and give one of three grades. Assign a grade of A (excellent) if the claim and proof are correct, even if the proof is not the simplest or the proof you would have given. Assign an F (failure) if the claim is incorrect, if the main idea of the proof is incorrect, or if most of the statements in it are incorrect. Assign a grade of C (partial credit) for a proof that is largely correct but contains one or two incorrect statements or justifications. Explain your grade. Tell what is incorrect (where applicable) and why.

1. Suppose \(m \) is an integer.

 Claim: If \(m^2 \) is odd, then \(m \) is odd.

 "Proof": Assume \(m \) is odd. Then \(m = 2k + 1 \) for some integer \(k \). Therefore,

 \[
 m^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1,
 \]

 which is odd. Therefore, if \(m^2 \) is odd, then \(m \) is odd.

2. Suppose \(x \) is a positive real number.

 Claim: The sum of \(x \) and its reciprocal is greater than or equal to 2. That is,

 \[
 x + \frac{1}{x} \geq 2
 \]

 "Proof": Multiplying by \(x \), we get \(x^2 + 1 \geq 2x \). By algebra,

 \[
 x^2 - 2x + 1 \geq 0 \quad \quad (x - 1)^2 \geq 0.
 \]

 Any real number squared is greater than or equal to zero, so \(x + \frac{1}{x} \geq 2 \) is true.